


1.1

1.2

1.2.1

1.2.1.1

1.2.2

1.2.2.1

1.2.2.2

1.3

1.3.1

1.3.1.1

1.3.2

1.3.2.1

1.3.2.2

Table	of	Contents
Introduction

Lesson	1.	Phone	Calls

Concepts

1:	Phone	Calls

Practicals

1.1:	Making	Phone	Calls	-	Part	1

1.2:	Making	Phone	Calls	-	Part	2

Lesson	2.	SMS	Messages

Concepts

2:	SMS	Messages

Practicals

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

Table	of	Contents

2



Android	Apps	–	Phone	Calls	and	SMS
The	Android	Apps	–	Phone	Calls	and	SMS	course	includes	two	lessons	created	by	the
Google	Developer	Training	team.	The	lessons	are	designed	to	be	used	in	instructor-led
training,	but	the	materials	are	also	available	online	for	self-study.

Prerequisites

Completion	of	the	entire	Android	Developer	Fundamentals	course,	or	equivalent
knowledge
Java	programming	experience
Knowledge	of	Android	programming	fundamentals

Course	materials

The	course	materials	include	the	conceptual	lessons	and	practical	exercises	in	this	GitBook.
Slide	decks	are	also	available	for	optional	use	by	instructors.

What	do	the	lessons	cover?

In	Android	Phone	Calls,	students	learn	how	to	use	the	telephony	features	in	Android.	In	the
practical,	they	create	an	app	that	launches	the	Phone	app	with	a	phone	number	to	make	a
call,	and	another	app	that	checks	for	needed	permissions	and	services,	and	then	lets	the
user	make	a	phone	call	from	within	the	app.

In	Android	SMS	Messages,	students	learn	how	to	use	the	SMS	features	in	Android.	In	the
practical,	they	create	an	app	that	launches	an	SMS	messaging	app	with	a	message,	and
another	app	that	checks	for	needed	permissions,	sends	an	SMS	message,	and	receives
SMS	messages.

Developed	by	the	Google	Developer	Training	Team

Last	updated:	March	2017

Introduction

3

https://developers.google.com/training/courses/android-fundamentals
https://drive.google.com/drive/folders/0B5Kg0X0yIQ1PTWJlNG9nSFdFYk0


This	work	is	licensed	under	a	Creative	Commons	Attribution-Non	Commercial	4.0
International	License

Introduction

4



1:	Phone	Calls
Contents:

The	difference	between	dialing	and	calling
Sending	an	intent	with	a	phone	number	to	dial
Making	a	call	from	within	your	app
Using	emulators	to	test	phone	calls
Related	practical
Learn	more

Android	mobile	devices	with	telephone/cellular	service	are	supplied	with	a	Phone	app	for
making	calls,	which	includes	a	dialer	for	dialing	a	phone	number.	This	chapter	describes	the
Android	telephony	features	you	can	use	from	within	your	app	by	launching	the	Phone	app
with	an	implicit	intent.	You	can	add	code	to	your	app	to:

Dial:	Launch	the	Phone	app's	dialer	with	a	phone	number	to	dial	a	call.	This	is	the
preferred	technique	for	apps	that	don't	need	to	monitor	the	phone's	state.
Call:	Request	the	user's	permission	if	necessary,	and	make	a	phone	call	from	within	the
app,	with	the	ability	to	monitor	the	phone's	state.	This	technique	keeps	the	user	within
your	app,	without	having	to	navigate	back	to	the	app.	It	also	enables	phone	calls	if	the
Phone	app	has	been	disabled	in	Settings.

Android's	Phone	app	automatically	receives	incoming	phone	calls.	You	can	use	the
PhoneStateListener	class	to	monitor	the	phone's	ringing	state	and	show	the	incoming	phone
number.

Tip:	You	can	also	use	a	broadcast	receiver	in	your	app	to	detect	an	incoming	call	or	SMS
message.	Broadcast	receivers	are	described	in	Broadcast	Receivers	in	the	Android
Developer	Fundamentals	Course.

The	difference	between	dialing	and	calling
You	use	an	implicit	intent	to	launch	the	Phone	app	from	your	app.	You	can	do	this	in	two
ways:

Use	an	implicit	Intent	and		ACTION_DIAL		to	launch	the	Phone	app	and	display	the	phone
number	in	the	dialer.

This	is	the	simplest	way,	with	no	need	to	request	permission	from	the	user	(the
Phone	app	asks	for	user	permission	if	needed).

1:	Phone	Calls

5

https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-concepts/content/Unit%203/73_c_broadcast_receivers.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_DIAL


The	user	can	change	the	phone	number	before	dialing	the	call.
The	user	navigates	back	to	your	app	using	the	Back	button	after	the	call	is
completed.

Use	an	implicit	Intent	and		ACTION_CALL		to	make	the	phone	call	directly	from	within	your
app.

This	action	keeps	the	user	within	your	app,	without	having	to	navigate	back	from
the	Phone	app.
Your	code	must	ask	the	user	for	permission	before	making	the	call	if	the	user	hasn't
already	granted	permission.	Just	as	your	app	needs	the	user's	permission	to
access	the	contacts	or	use	the	built-in	camera,	it	needs	the	user's	permission	to
directly	use	the	phone.
Your	app	can	monitor	the	state	of	the	phone	call.

Formatting	a	phone	number
To	use	an	intent	to	launch	the	Phone	app	with	a	phone	number	to	dial,	your	app	needs	to
prepare	a	Uniform	Resource	Identifier	(URI)	for	the	phone	number.	The	URI	is	a	string
prefixed	by	"tel:",	for	example,		tel:14155551212		for	a	U.S.	number	(use	the	complete
number	as	you	would	enter	it	on	a	phone	keypad).	You	can	hard-code	a	phone	number
inside	your	app,	or	provide	an	EditText	field	where	the	user	can	enter	a	phone	number.

The	PhoneNumberUtils	class	provides	utility	methods	for	normalizing	and	formatting	phone
number	strings.	For	example,	to	remove	extraneous	characters	such	as	dashes	and
parentheses,	use	the	normalizeNumber()	method,	which	removes	characters	other	than
digits	from	a	phone	number	string.	For	example,	the	statement	below	normalizes	a	phone
number	entered	into	an	EditText	view	named		editText	:

String	normalizedPhoneNumber	=

													PhoneNumberUtils.normalizeNumber(editText.getText().toString());

Note:	The	normalizeNumber()	method,	added	to	Android	API	level	21	(corresponding	to
Lollipop),	is	not	available	in	older	versions	of	the	API.
Use	the	formatNumber()	method	to	format	a	phone	number	string	for	a	specific	country	if	the
given	number	doesn't	include	a	country	code.	You	can	use
	Locale.getDefault().getCountry()		to	get	the	current	country	setting,	or	use	the	ISO	3166-1
two-letter	country	code	to	specify	a	country	to	use:

String	formattedNumber	=	PhoneNumberUtils.formatNumber(normalizedPhoneNumber,

																				Locale.getDefault().getCountry());

1:	Phone	Calls

6

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_CALL
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#normalizeNumber(java.lang.String)
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#normalizeNumber(java.lang.String)
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#formatNumber(java.lang.String,%20java.lang.String)


Using	an	intent	with	the	phone	number	to	dial
To	use	an	intent	to	launch	the	Phone	app,	use	a	button	to	let	the	user	start	the	call.	When
the	user	taps	the	button,	its	click	handler	initiates	the	call.	For	example,	a	simple	layout
could	provide	an	ImageButton	like	the	phone	icon	in	the	figure	below.

1:	Phone	Calls

7



1:	Phone	Calls

8



The	Phone	app	opens	with	the	number	to	be	dialed.	The	user	can	change	the	number	and
initiate	the	call.	The	Phone	app	then	makes	the	call.

<ImageButton

				android:id="@+id/phone_icon"

				...

				android:onClick="dialNumber"/>

In	the		dialNumber()		method,	use	an	implicit	intent	with	the	intent	action		ACTION_DIAL		to
pass	the	phone	number	to	the	Phone	app	as	a	URI.

public	void	dialNumber()	{

				TextView	textView	=	(TextView)	findViewById(R.id.number_to_call);

				//	Use	format	with	"tel:"	and	phone	number	to	create	phoneNumber.

				String	phoneNumber	=	String.format("tel:	%s",

																																							textView.getText().toString());

				//	Create	the	intent.

				Intent	dialIntent	=	new	Intent(Intent.ACTION_DIAL);

				//	Set	the	data	for	the	intent	as	the	phone	number.

				dialIntent.setData(Uri.parse(phoneNumber));

				//	If	package	resolves	to	an	app,	send	intent.

				if	(dialIntent.resolveActivity(getPackageManager())	!=	null)	{

								startActivity(dialIntent);

				}	else	{

								Log.e(TAG,	"Can't	resolve	app	for	ACTION_DIAL	Intent.");

				}

}

In	the	above	example,	the	code	does	the	following:

Gets	the	text	of	the	phone	number	from		textView		with		getText()		and	uses	it	with
	String.format		to	include	the		tel:		prefix	(for	example		tel:14155551212	):

...

		String	phoneNumber	=	String.format("tel:	%s",

																																			textView.getText().toString());

...

Creates	an	implicit	intent	with	the	intent	action		ACTION_DIAL	,	and	sets	the	phone
number	as	the	data	for	the	intent	using	setData():

…

Intent	intent	=	new	Intent(Intent.ACTION_DIAL);

//	Set	the	data	for	the	intent	as	the	phone	number.

intent.setData(Uri.parse(phoneNumber));

...

1:	Phone	Calls

9

https://developer.android.com/reference/android/content/Intent.html#setData(android.net.Uri)


Checks	if	the	implicit	intent	resolves	to	an	app	that	is	installed	on	the	device.

1.	 If	it	does,	the	code	sends	the	intent	with		startActivity()	,	and	the	system
launches	the	Phone	app,	as	shown	in	the	figure	below.

1:	Phone	Calls

10



1:	Phone	Calls

11



2.	 If	it	does	not,	an	error	is	logged.

If	there	are	no	apps	on	the	device	that	can	receive	the	implicit	intent,	your	app	will	crash
when	it	calls		startActivity()	.	To	first	verify	that	an	app	exists	to	receive	the	intent,	call
resolveActivity()	on	your	Intent	object	with	getPackageManager()	to	get	a
PackageManager	instance	for	finding	package	information.	The		resolveActivity()	
method	determines	the	best	action	to	perform	for	a	given	intent.	If	the	result	is	non-null,
there	is	at	least	one	app	that	can	handle	the	intent	and	it's	safe	to	call		startActivity()	.

…

if	(intent.resolveActivity(getPackageManager())	!=	null)	{

				startActivity(intent);

}	else	{

				Log.e(TAG,	"Can't	resolve	app	for	ACTION_DIAL	Intent.");

}

...

This	example	uses	a	hard-coded	phone	number,	which	is	a	useful	technique	for	providing	a
support	hotline	number,	or	the	selected	phone	number	for	a	contact.	In	the	next	example,
users	can	enter	their	own	numbers	to	make	calls.

Making	a	call	from	within	your	app
To	make	a	phone	call	directly	from	your	app,	do	the	following:

1.	 Add	permissions	that	enable	making	a	call	and	reading	the	phone	activity.
2.	 Check	to	see	if	telephony	is	enabled;	if	not,	disable	the	phone	feature.
3.	 Check	to	see	if	the	user	continues	to	grant	permission,	or	request	permission	if	needed.
4.	 Extend	PhoneStateListener,	and	register	the	listener	using	the	TelephonyManager

class.
5.	 Use	an	implicit	intent	with		ACTION_CALL		to	make	the	phone	call.

Adding	permissions	to	the	manifest

Access	to	telephony	information	is	permission-protected.	In	order	to	make	a	call,	your	app
needs	the		CALL_PHONE		permission.	In	addition,	in	order	to	monitor	the	phone	state,	your	app
needs	the		READ_PHONE_STATE		permission.	Both	must	be	declared	in	the	apps's
AndroidManifest.xml	file.

Add	the	following	to	your	app's	AndroidManifest.xml	file	after	the	first	line	(with	the		package	
definition)	and	before	the		<application>		section:

1:	Phone	Calls

12

https://developer.android.com/reference/android/content/pm/PackageManager.html#resolveActivity(android.content.Intent,%20int)
https://developer.android.com/reference/android/content/Context.html#getPackageManager()
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html


...

<uses-permission	android:name="android.permission.CALL_PHONE"	/>

<uses-permission	android:name="android.permission.READ_PHONE_STATE"	/>

<application

...

Checking	for	TelephonyManager

Not	all	devices	are	enabled	to	use	TelephonyManager.	To	check	to	see	if	telephony	is
enabled,	follow	these	steps:

1.	 Retrieve	a	TelephonyManager	using	getSystemService()	with	the	string	constant
TELEPHONY_SERVICE	in	the	onCreate()	method	of	the	activity:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			...

			//	Create	a	telephony	manager.

			mTelephonyManager	=	(TelephonyManager)

																														getSystemService(TELEPHONY_SERVICE);

			...

}

2.	 Create	a	method	to	ensure	that		mTelephonyManager		is	not	null,	and	that	the	SIM	state	is
ready:

private	boolean	isTelephonyEnabled()	{

			if	(mTelephonyManager	!=	null)	{

							if	(mTelephonyManager.getSimState()	==

																														TelephonyManager.SIM_STATE_READY)	{

											return	true;

							}

			}

			return	false;

}

The		getSimState()		method	returns	a	constant	indicating	the	state	of	the	SIM	card.

The	above		return		statement	first	checks	if		telephonyManager		is	not		null	,	and	if	it	is
not,	it	returns		true		if	the	state	of	the	SIM	is	"ready".

3.	 Call	the	above	method	in	the		onCreate()		method	of	your	activity.	If	telephony	is	not
enabled,	your	code	should	disable	the	feature.	The	example	below	displays	a	toast
message,	logs	a	debug	message,	and	disables	the	call	button,	effectively	disabling	the
phone	feature:

1:	Phone	Calls

13

https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/content/Context.html#getSystemService(java.lang.String)
https://developer.android.com/reference/android/content/Context.html#TELEPHONY_SERVICE
https://developer.android.com/reference/android/telephony/TelephonyManager.html#getSimState()


...

if	(isTelephonyEnabled())	{

			Log.d(TAG,	getString(R.string.telephony_enabled));

			//	Todo:	Register	the	PhoneStateListener.

			...

			//	Todo:	Check	for	permission	here.

			...

}	else	{

		Toast.makeText(this,

														R.string.telephony_not_enabled,

														Toast.LENGTH_LONG).show();

		Log.d(TAG,	getString(R.string.telephony_not_enabled));

		//	Disable	the	call	button.

		disableCallButton();

}

...

Checking	and	requesting	user	permission

Beginning	in	Android	6.0	(API	level	23),	users	grant	permissions	to	apps	while	the	app	is
running,	not	when	they	install	the	app.	This	approach	streamlines	the	app	install	process,
since	the	user	does	not	need	to	grant	permissions	when	they	install	or	update	the	app.	It
also	gives	the	user	more	control	over	the	app's	functionality.	However,	your	app	must	check
for	permission	every	time	it	does	something	that	requires	permission	(such	as	making	a
phone	call).	If	the	user	has	used	the	Settings	app	to	turn	off	Phone	permissions	for	the	app,
your	app	can	display	a	dialog	to	request	permission.

Tip:	For	a	complete	description	of	the	request	permission	process,	see	Requesting
Permissions	at	Run	Time.

Follow	these	steps	to	check	for	and	request	user	permission	to	make	phone	calls:

1.	 At	the	top	of	the	activity	that	makes	a	phone	call,	and	below	the	activity's	class
definition,	define	a	constant	variable	to	hold	the	request	code,	and	set	it	to		1	:

private	static	final	int	MY_PERMISSIONS_REQUEST_CALL_PHONE	=	1;

Why	the	integer	1?	Each	permission	request	needs	three	parameters:	the		context	,	a
string	array	of	permissions,	and	an	integer		requestCode	.	The		requestCode		is	an	integer
attached	to	the	request,	and	it	can	be	any	integer	that	suits	your	use	case.	When	a
result	returns	in	the	activity,	it	contains	this	code	and	uses	it	to	differentiate	multiple
permission	results	from	each	other.

2.	 In	the	activity	that	makes	a	phone	call,	create	a	private	method
	checkForPhonePermission()		that	returns		void	.

1:	Phone	Calls

14

https://developer.android.com/training/permissions/requesting.html


private	void	checkForPhonePermission()	{

if	(ActivityCompat.checkSelfPermission(this,

																				Manifest.permission.CALL_PHONE)	!=

																				PackageManager.PERMISSION_GRANTED)	{

				//	Permission	not	yet	granted.	Use	requestPermissions().

				Log.d(TAG,	getString(R.string.permission_not_granted));

				ActivityCompat.requestPermissions(this,

																				new	String[]{Manifest.permission.CALL_PHONE},

																				MY_PERMISSIONS_REQUEST_CALL_PHONE);

}	else	{

				//	Permission	already	granted.

}

3.	 In	the	activity's		onCreate()		method,	call	the	method	to	perform	the	telephony	check:

...

if	(isTelephonyEnabled())	{

			//	Check	for	phone	permission.

			checkForPhonePermission();

			//	Todo:	Register	the	PhoneStateListener.

}	else	{

...

Note	the	following	about	the		checkForPhonePermission()		method:

The	code	uses		checkSelfPermission()		to	determine	whether	your	app	has	been
granted	a	particular	permission	by	the	user.
If	permission	has	not	been	granted,	the	code	uses	the		requestPermissions()		method	to
display	a	standard	dialog	for	the	user	to	grant	permission.
The		requestPermissions()		method	needs	three	parameters:	the	context,	a	string	array
of	permissions,	and	the	predefined	integer		requestCode	.
When	your	app	calls		requestPermissions()	,	the	system	shows	a	standard	permission
dialog	to	the	user,	as	shown	in	the	figure	below.	Your	app	can't	configure	or	alter	the
dialog.

Tip:	If	you	want	to	provide	any	information	or	explanation	to	the	user,	you	must	do	that
before	you	call		requestPermissions()	,	as	described	in	Explain	why	the	app	needs
permissions.

1:	Phone	Calls

15

https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)
https://developer.android.com/training/permissions/requesting.html#explain


When	the	user	responds	to	the	request	permission	dialog,	the	system	invokes	your	app's
onRequestPermissionsResult()	method,	passing	it	the	user	response.	Override	that	method
to	find	out	whether	the	permission	was	granted:

@Override

public	void	onRequestPermissionsResult(int	requestCode,

																				String	permissions[],	int[]	grantResults)	{

				switch	(requestCode)	{

								case	MY_PERMISSIONS_REQUEST_CALL_PHONE:	{

												if	(permissions[0].equalsIgnoreCase

																								(Manifest.permission.CALL_PHONE)

																								&&	grantResults[0]	==

																								PackageManager.PERMISSION_GRANTED)	{

																//	Permission	was	granted.

												}	else	{

																//	Permission	denied.	Stop	the	app.

																Log.d(TAG,	getString(R.string.failure_permission));

																Toast.makeText(this,

																												getString(R.string.failure_permission),

																												Toast.LENGTH_SHORT).show();

																//	Disable	the	call	button

																disableCallButton();

												}

								}

				}

}

The	above	code	snippet	shows	a		switch		statement	based	on	the	value	of		requestCode	,
with	one		case		to	check	if	the	permission	is	the	one	you	defined	as
	MY_PERMISSIONS_REQUEST_CALL_PHONE	.

Tip:	It	helps	to	use	a		switch		statement	so	that	you	can	add	more	requests	to	the	app.

The	user's	response	to	the	request	dialog	is	returned	in	the		permissions		array	(index		0		if
only	one	permission	is	requested	in	the	dialog).	Compare	this	to	the	corresponding	grant
result,	which	is	either		PERMISSION_GRANTED		or		PERMISSION_DENIED	.

If	the	user	denies	a	permission	request,	your	app	should	take	appropriate	action.	For
example,	your	app	might	disable	the	functionality	that	depends	on	this	permission	(such	as
the	call	button)	and	show	a	dialog	explaining	why	it	could	not	perform	it.

Extending	and	registering	PhoneStateListener

PhoneStateListener	monitors	changes	in	specific	telephony	states	such	as	ringing,	off-hook,
and	idle.	To	use	PhoneStateListener:

Implement	a	listener	class	that	extends	PhoneStateListener,	and	override	its

1:	Phone	Calls

16

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.OnRequestPermissionsResultCallback.html#onRequestPermissionsResult(int,%20java.lang.String[],%20int[])
https://developer.android.com/reference/android/telephony/PhoneStateListener.html


onCallStateChanged()	method.
In	the	onCallStateChanged()	method,	provide	actions	based	on	the	phone	state.
Register	the	listener	using	the	TelephonyManager	class,	which	provides	access	to
information	about	the	telephony	services	on	the	device.

Implementing	a	listener

Create	a	private	class	in	your	activity	that	extends	PhoneStateListener:

private	class	MyPhoneCallListener	extends	PhoneStateListener	{

				...

}

Within	this	class,	implement	the		onCallStateChanged()		method	of	PhoneStateListener	to
take	actions	based	on	the	phone	state.	The	code	below	uses	a		switch		statement	with
constants	of	the	TelephonyManager	class	to	determine	which	of	three	states	the	phone	is	in:
	CALL_STATE_RINGING	,		CALL_STATE_OFFHOOK	,	and		CALL_STATE_IDLE	:

@Override

public	void	onCallStateChanged(int	state,	String	incomingNumber)	{

				switch	(state)	{

								case	TelephonyManager.CALL_STATE_RINGING:

												//	Incoming	call	is	ringing.

												break;

								case	TelephonyManager.CALL_STATE_OFFHOOK:

												//	Phone	call	is	active	--	off	the	hook.

												break;

								case	TelephonyManager.CALL_STATE_IDLE:

												//	Phone	is	idle	before	and	after	phone	call.

												...

												break;

								default:

												//	Must	be	an	error.	Raise	an	exception	or	just	log	it.

												break;

				}

}

Provide	actions	for	phone	states

Add	the	actions	you	want	to	take	based	on	the	phone	states.	For	example,	your	code	can
log	a	message	for	testing	purposes,	and	display	a	toast	to	the	user.	The		CALL_STATE_RINGING	
state	includes	the	incoming	phone	number,	which	your	code	can	show	in	a	toast.

1:	Phone	Calls

17

https://developer.android.com/reference/android/telephony/PhoneStateListener.html#onCallStateChanged(int,%20java.lang.String)
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html#onCallStateChanged(int,%20java.lang.String)
https://developer.android.com/reference/android/telephony/TelephonyManager.html


The	phone	is	in	the		CALL_STATE_IDLE		state	until	a	call	is	started.	The	phone	state	changes	to
	CALL_STATE_OFFHOOK		in	order	to	make	the	connection	and	stays	in	the	state	for	the	duration
of	the	call.	The	phone	state	returns	to	the		CALL_STATE_IDLE		state	after	the	call	finishes	or	if
the	call	is	denied	or	not	completed.

Your	app	resumes	when	the	state	changes	back	to	the		CALL_STATE_IDLE		state.

Tip:	An	app	running	on	Android	versions	prior	to	KitKat	(version	19)	doesn't	resume	when
the	phone	state	returns	to		CALL_STATE_IDLE		from		CALL_STATE_OFFHOOK		at	the	end	of	a	call.
The	code	below	sets	the	flag		returningFromOffHook		to		true		when	the	state	is
	CALL_STATE_OFFHOOK	,	so	that	when	the	state	is	back	to		CALL_STATE_IDLE	,	you	can	use	the
flag	to	catch	the	end-of-call	and	restart	the	app's	activity.

private	class	MyPhoneCallListener	extends	PhoneStateListener	{

				private	boolean	returningFromOffHook	=	false;

				@Override

				public	void	onCallStateChanged(int	state,	String	incomingNumber)	{

								//	Define	a	string	for	the	message	to	use	in	a	toast.

								String	message	=	getString(R.string.phone_status);

								switch	(state)	{

												case	TelephonyManager.CALL_STATE_RINGING:

																//	Incoming	call	is	ringing

																message	=	message	+

																								getString(R.string.ringing)	+	incomingNumber;

																Toast.makeText(MainActivity.this,	message,

																								Toast.LENGTH_SHORT).show();

																Log.i(TAG,	message);

																break;

												case	TelephonyManager.CALL_STATE_OFFHOOK:

																//	Phone	call	is	active	--	off	the	hook

																message	=	message	+	getString(R.string.offhook);

																Toast.makeText(MainActivity.this,	message,

																																				Toast.LENGTH_SHORT).show();

																Log.i(TAG,	message);

																returningFromOffHook	=	true;

																break;

												case	TelephonyManager.CALL_STATE_IDLE:

																//	Phone	is	idle	before	and	after	phone	call.

																//	If	running	on	version	older	than	19	(KitKat),

																//	restart	activity	when	phone	call	ends.

																message	=	message	+	getString(R.string.idle);

																Toast.makeText(MainActivity.this,	message,

																																			Toast.LENGTH_SHORT).show();

																Log.i(TAG,	message);

																if	(returningFromOffHook)	{

																				//	No	need	to	do	anything	if	>=	version	K

																				if	(Build.VERSION.SDK_INT	<	Build.VERSION_CODES.KITKAT)	{

																								Log.i(TAG,	getString(R.string.restarting_app));

																								//	Restart	the	app.

1:	Phone	Calls

18



																								Intent	intent	=	getPackageManager()

																																				.getLaunchIntentForPackage(

																																				.getPackageName());

																								i.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

																								startActivity(i);

																				}

																}

																break;

												default:

																message	=	message	+	"Phone	off";

																Toast.makeText(MainActivity.this,	message,

																																								Toast.LENGTH_SHORT).show();

																Log.i(TAG,	message);

																break;

								}

				}

}

Registering	your	listener

Register	the	listener	object	using	the	TelephonyManager	class:

Use	getSystemService()	with		Context.TELEPHONY_SERVICE	.
Use	telephonyManager.listen()	with	the	PhoneStateListener	set	to	the
	LISTEN_CALL_STATE	.

A	good	place	to	do	this	is	in	the	activity's		onCreate()		method	right	after	checking	for	phone
permission,	which	is	after	ensuring	that	telephony	is	enabled.	Follow	these	steps:

1.	 At	the	top	of	the	activity,	define	a	variable	for	the	PhoneStateListener:

private	MyPhoneCallListener	mListener;

2.	 In	the		onCreate()		method,	add	the	following	code	after	checking	for	telephony	and
permission:

...

if	(isTelephonyEnabled())	{

			...

			checkForPhonePermission();

			//	Register	the	PhoneStateListener	to	monitor	phone	activity.

			mListener	=	new	MyPhoneCallListener();

			telephonyManager.listen(mListener,

																PhoneStateListener.LISTEN_CALL_STATE);

}	else	{	...

3.	 You	must	also	unregister	the	listener	in	the	activity's	onDestroy()	method.	This	method
is	usually	implemented	to	free	resources	like	threads	that	are	associated	with	an

1:	Phone	Calls

19

https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/content/Context.html#getSystemService(java.lang.String)
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/app/Activity.html#onDestroy()


activity,	so	that	a	destroyed	activity	does	not	leave	such	things	around	while	the	rest	of
its	application	is	still	running.	Override	the		onDestroy()		method	by	adding	the	following
code:

@Override

protected	void	onDestroy()	{

			super.onDestroy();

			if	(isTelephonyEnabled())	{

							telephonyManager.listen(mListener,

																												PhoneStateListener.LISTEN_NONE);

			}

}

Using	an	implicit	intent	to	make	the	call

To	launch	the	Phone	app	and	start	the	call:

Use	a	button	in	the	layout	with	an		onClick		method	such	as		callNumber().	
In	the		callNumber()		method,	create	an	implicit	intent	with	the	intent	action
	ACTION_CALL	.
Set	the	phone	number	as	the	data	for	the	intent	with		setData()	.

The	following	is	an	sample		callNumber()		method:

public	void	callNumber(View	view)	{

				EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

				//	Use	format	with	"tel:"	and	phone	number	to	create	phoneNumber.

				String	phoneNumber	=	String.format("tel:	%s",

																																									editText.getText().toString());

				//	Create	the	intent.

				Intent	callIntent	=	new	Intent(Intent.ACTION_CALL);

				//	Set	the	data	for	the	intent	as	the	phone	number.

				callIntent.setData(Uri.parse(phoneNumber));

				//	If	package	resolves	to	an	app,	check	for	phone	permission,

				//	and	send	intent.

				if	(callIntent.resolveActivity(getPackageManager())	!=	null)	{

								checkForPhonePermission();

								startActivity(callIntent);

				}	else	{

								Log.e(TAG,	"Can't	resolve	app	for	ACTION_CALL	Intent.");

				}

}

As	in	the	previous	example	for	passing	a	number	for	dialing,	you	use	a	string	for	the	phone
number	with	the		tel:		prefix.

1:	Phone	Calls

20



If	the	implicit	intent	resolves	to	an	installed	app,	use	the		checkForPhonePermission()		method
you	created	previously	to	check	to	see	if	the	app	still	has	permission	to	make	the	call.	You
must	check	for	that	permission	every	time	you	perform	an	operation	that	requires	it,	because
the	user	is	always	free	to	revoke	the	permission.	Even	if	the	app	used	the	phone	a	minute
ago,	it	can't	assume	it	still	has	that	permission	a	minute	later.

Using	emulators	to	test	phone	call	functionality
If	you	don't	have	cellular	service	on	your	device,	or	telephony	is	not	enabled,	you	can	test
the	app	using	two	emulator	instances—one	emulator	instance	calls	the	other	one.

1.	 Launch	an	emulator	directly	from	the	AVD	Manager	by	choosing	Tools	>	Android	>
AVD	Manager.

2.	 Double-click	a	predefined	device.	Note	the	number	that	appears	in	the	emulator's
window	title	on	the	far	right,	as	shown	in	the	figure	below	as	#1	(5556).	This	is	the	port
number	of	the	emulator	instance.

3.	 Open	the	Android	Studio	project	for	the	phone-calling	app.
4.	 Run	the	phone-calling	app,	but	choose	another	emulator	from	the	list—not	the	one	that

1:	Phone	Calls

21



is	already	running.
5.	 In	the	phone-calling	app,	instead	of	a	real	phone	number,	enter	the	port	number	(as	in

5556),	and	click	the	call	button.	The	emulator	shows	the	phone	call	starting	up,	as
shown	in	the	figure	below.

1:	Phone	Calls

22



1:	Phone	Calls

23



The	other	emulator	instance	should	now	be	receiving	the	call,	as	shown	in	the	figure
below:

1:	Phone	Calls

24



1:	Phone	Calls

25



6.	 Click	Answer	or	Dismiss	on	the	emulator	receiving	the	call,.	After	you	click	Answer,
also	click	the	red	Hang-up	button	to	end	the	call.

1:	Phone	Calls

26



1:	Phone	Calls

27



Related	practical
Making	Phone	Calls	-	Part	1
Making	Phone	Calls	-	Part	2

Learn	more
Android	Developer	Reference:

Common	Intents
TelephonyManager
PhoneStateListener
Requesting	Permissions	at	Run	Time
checkSelfPermission
Run	Apps	on	the	Android	Emulator
Intents	and	Intent	Filters
Intent

Stack	Overflow:
How	to	format	a	phone	number	using	PhoneNumberUtils?
How	to	make	phone	call	using	intent	in	android?
Ringing	myself	using	android	emulator
Fake	Incoming	Call	Android
Simulating	incoming	call	or	sms	in	Android	Studio

Other
User	(beginner)	tutorial:	How	to	Make	Phone	Calls	with	Android
Developer	Video:	How	to	Make	a	Phone	Call

1:	Phone	Calls

28

https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/studio/run/emulator.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html
http://stackoverflow.com/questions/6106859/how-to-format-a-phone-number-using-phonenumberutils
http://stackoverflow.com/questions/4275678/how-to-make-phone-call-using-intent-in-android
http://stackoverflow.com/questions/2577785/ringing-myself-using-android-emulator
http://stackoverflow.com/questions/4964703/fake-incoming-call-android
http://stackoverflow.com/questions/27638462/simulating-incoming-call-or-sms-in-android-studio
http://www.beginandroid.com/phonecall.shtml
https://youtu.be/3PHDcQOGFtg


1.1:	Part	1	-	Making	Phone	Calls
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Send	an	intent	with	the	phone	number	to	dial
Task	2:	Make	a	phone	call	from	within	an	app

Android	mobile	devices	with	telephone/cellular	service	are	pre-installed	with	a	Phone	app	for
making	calls,	which	includes	a	dialer	for	dialing	any	phone	number.	You	use	an	implicit	Intent
to	launch	the	Phone	app	from	your	app.	You	have	two	choices:

Use		ACTION_DIAL		to	launch	the	Phone	app	independently	from	your	app	with	the	phone
number	displayed	in	the	dialer.	The	user	then	makes	the	call	in	the	Phone	app.	This	is
the	preferred	action	for	apps	that	don't	have	to	monitor	the	phone's	state.
Use		ACTION_CALL		to	launch	the	Phone	app	in	the	context	of	your	app,	making	the	call
directly	from	your	app,	and	monitoring	the	phone	state.	This	action	keeps	the	user
within	your	app,	without	having	to	navigate	back	to	the	app.	Your	app	must	request
permission	from	the	user	before	making	the	call	if	the	user	hasn't	already	granted
permission.

What	you	should	already	KNOW
From	the	previous	chapters,	you	should	be	able	to:

Create	and	run	interactive	apps	in	Android	Studio.
Work	with	XML	layouts.
Create	an	implicit	intent	to	perform	an	action	using	another	app.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Pass	a	phone	number	to	the	Phone	app's	dialer.
Perform	a	phone	call	within	your	app.
Test	to	see	if	telephony	services	are	enabled.

1.1:	Making	Phone	Calls	-	Part	1

29

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_DIAL
https://developer.android.com/reference/android/content/Intent.html#ACTION_CALL


Check	for	calling	permission,	and	request	permission	if	required.

What	you	will	DO
In	this	practical,	you	will:

Create	an	app	that	uses	an	implicit	intent	to	launch	the	Phone	app.
Create	another	app	that	makes	phone	calls	from	within	the	app.
Test	to	see	if	telephony	services	are	enabled	before	enabling	the	app.
Check	for	calling	permission,	which	can	change	at	any	time.
Request	permission	from	the	user,	if	necessary,	to	make	the	call.

App	overview
You	will	create	two	apps:

PhoneCallDial:	A	basic	app	that	uses	an	implicit	intent	to	launch	the	Phone	app	with	a
hard-coded	phone	number	for	dialing.	The	Phone	app	makes	the	call.	You	could	use
this	technique	to	provide	a	one-button	dialer	to	custom	support.	In	this	lesson	you	will
build	a	layout,	shown	in	the	figure	below.	It	includes	a	TextView	with	a	hard-coded
phone	number,	and	an	ImageButton	with	an	icon	to	launch	the	Phone	app	with	that
phone	number	in	its	dialer.

1.1:	Making	Phone	Calls	-	Part	1

30

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallDial


1.1:	Making	Phone	Calls	-	Part	1

31



Phone	Calling	Sample:	An	app	that	secures	permission,	uses	an	implicit	intent	to
make	a	phone	call	from	the	app,	and	uses	the	TelephonyManager	class	to	monitor	the
phone's	state.	You	would	use	this	technique	if	you	want	to	keep	the	user	within	your
app,	without	having	to	navigate	back	to	the	app.	In	this	lesson,	you	modify	the	above
layout	to	use	an	EditText	so	that	users	can	enter	the	phone	number.	The	layout	looks
like	the	figure	below:

1.1:	Making	Phone	Calls	-	Part	1

32

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSample
https://developer.android.com/reference/android/telephony/TelephonyManager.html


1.1:	Making	Phone	Calls	-	Part	1

33



Task	1.	Send	an	intent	with	the	phone	number
to	dial
In	this	task	you	will	create	an	app	that	uses	an	implicit	intent	to	launch	the	Phone	app	to	dial
a	given	phone	number.	To	send	that	intent,	your	app	needs	to	prepare	a	Uniform	Resource
Identifier	(URI)	that	is	prefixed	by	"tel:"	(for	example		tel:14155551212	).

1.1	Create	the	app	and	layout

1.	 Create	a	project	using	the	Empty	Activity	template	and	call	it	PhoneCallDial.

2.	 Add	an	icon	for	the	call	button	by	following	these	steps:

i.	 Select	the	drawable/	folder	in	the	Project:	Android	view	and	choose	File	>	New	>
Vector	Asset.

ii.	 Click	the	Android	icon	next	to	"Icon:"	to	choose	an	icon.	To	find	a	handset	icon,
choose	Communication	in	the	left	column.

iii.	 Select	the	icon,	click	OK,	click	Next,	and	then	click	Finish.

3.	 Open	the	activity_main.xml	layout	file.

i.	 Change	the	root	view	to	RelativeLayout.
ii.	 In	the	"Hello	World"	TextView	element,	remove	the		layout_constraint		attributes,	if

they	are	present.
iii.	 Change	the	TextView	to	show	a	dummy	contact	name,	as	if	the	app	had	retrieved

the	name	from	a	contacts	database	and	assigned	it	to	a	TextView:

<TextView

android:id="@+id/contact_name"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_margin="@dimen/activity_horizontal_margin"

android:textSize="24sp"

android:text="Jane	Doe"	/>

4.	 Extract	the	strings	and	dimensions	into	resources:

	24sp	:		contact_text_size		for	the	text	size.
	Jane	Doe	:		contact_name		for	the	text.

5.	 Add	another	TextView	for	the	phone	number:

1.1:	Making	Phone	Calls	-	Part	1

34



<TextView

				android:id="@+id/number_to_call"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_margin="@dimen/activity_horizontal_margin"

				android:layout_below="@id/contact_name"

				android:text="14155551212"	/>

You	will	use	the		android:id			number_to_call		to	retrieve	the	phone	number.

6.	 After	adding	a	hard-coded	phone	number	string,	extract	it	into	the	resource
	phone_number	.

7.	 Add	an	ImageButton	for	initiating	the	call:

<ImageButton

				android:id="@+id/phone_icon"

				android:contentDescription="Make	a	call"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_below="@id/contact"

				android:layout_toRightOf="@id/number_to_call"

				android:layout_toEndOf="@id/number_to_call"

				android:src="@drawable/ic_call_black_24dp"

				android:onClick="dialNumber"/>

Use	the	vector	asset	you	added	previously	(for	example		ic_call_black_24dp		for	a
phone	handset	icon)	for	the		android:src		attribute.	You	will	use	the		android:id	
	@phone_icon		to	refer	to	the	button	for	dialing	the	phone.

The		dialNumber		method	referred	to	in	the		android:onClick		attribute	remains
highlighted	until	you	create	this	method	in	the	MainActivity,	which	you	do	in	the	next
step.

8.	 After	adding	a	hard-coded	content	description,	extract	it	into	the	string	resource
	make_a_call	.

9.	 Click		dialNumber		in	the		android:onClick		attribute,	click	the	red	light	bulb	that	appears,
and	then	select	Create	dialNumber(View)	in	'MainActivity'.	Android	Studio
automatically	creates	the		dialNumber()		method	in	MainActivity	as		public	,	returning
	void	,	with	a		View		parameter.	This	method	is	called	when	the	user	taps	the
ImageButton.

public	void	dialNumber(View	view)	{

}

1.1:	Making	Phone	Calls	-	Part	1

35



The	layout	should	look	something	like	the	figure	below.

1.1:	Making	Phone	Calls	-	Part	1

36



1.1:	Making	Phone	Calls	-	Part	1

37



The	following	is	the	complete	code	for	the	XML	layout	in	activity_main.xml,	including
comments:

<RelativeLayout	…

				<!--	TextView	for	a	dummy	contact	name	from	a	contacts	database	-->

				<TextView

								android:id="@+id/contact_name"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_margin="@dimen/activity_horizontal_margin"

								android:textSize="@dimen/contact_text_size"

								android:text="@string/contact"	/>

				<!--	TextView	for	a	hard-coded	phone	number		-->

				<TextView

								android:id="@+id/number_to_call"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_margin="@dimen/activity_horizontal_margin"

								android:layout_below="@id/contact_name"

								android:text="@string/phone_number"	/>

				<!--	The	dialNumber()	method	will	be	called	by	this	button.		-->

				<ImageButton

								android:id="@+id/phone_icon"

								android:contentDescription="@string/make_a_call"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@id/contact_name"

								android:layout_toRightOf="@id/number_to_call"

								android:layout_toEndOf="@id/number_to_call"

								android:src="@drawable/ic_call_black_24dp"

								android:onClick="dialNumber"/>

</RelativeLayout>

1.2	Edit	the	onClick	method	in	MainActivity

1.	 In	MainActivity,	define	a	constant	for	the	log	tag.

public	static	final	String	TAG	=	MainActivity.class.getSimpleName();

2.	 Inside	the		dialNumber()		method	created	in	the	previous	section,	create	a	reference	to
the		number_to_call		TextView:

public	void	dialNumber(View	view)	{

			TextView	textView	=	(TextView)	findViewById(R.id.number_to_call);

			...

1.1:	Making	Phone	Calls	-	Part	1

38



3.	 To	create	the	phone	number	URI	string		phoneNumber	,	get	the	phone	number	from
	textView		and	use	it	with		String.format		to	include	the		tel:		prefix:

...

//	Use	format	with	"tel:"	and	phone	number	to	create	mPhoneNum.

String	phoneNumber	=	String.format("tel:	%s",

																																			textView.getText().toString());

...

4.	 Define	an	implicit	intent	(	dialIntent	)	with	the	intent	action		ACTION_DIAL	,	and	set	the
	phoneNumber		as	data	for	the	intent:

...

//	Create	the	intent.

Intent	dialIntent	=	new	Intent(Intent.ACTION_DIAL);

//	Set	the	data	for	the	intent	as	the	phone	number.

dialIntent.setData(Uri.parse(phoneNumber));

...

5.	 To	verify	that	an	app	exists	to	receive	the	intent,	call	resolveActivity()	on	your	Intent
object	with	getPackageManager()	to	get	a	PackageManager	instance	for	finding
package	information.	The		resolveActivity()		method	determines	the	best	action	to
perform	for	a	given	intent.	If	the	result	is	non-null,	there	is	at	least	one	app	that	can
handle	the	intent	and	it's	safe	to	call		startActivity()	.

...

//	If	package	resolves	to	an	app,	send	intent.

if	(dialIntent.resolveActivity(getPackageManager())	!=	null)	{

					startActivity(dialIntent);

}	else	{

					Log.e(TAG,	"Can't	resolve	app	for	ACTION_DIAL	Intent.");

}

...

The	full	method	should	now	look	like	the	following:

1.1:	Making	Phone	Calls	-	Part	1

39

https://developer.android.com/reference/android/content/pm/PackageManager.html#resolveActivity(android.content.Intent,%20int)
https://developer.android.com/reference/android/content/Context.html#getPackageManager()


public	void	dialNumber()	{

				TextView	textView	=	(TextView)	findViewById(R.id.number_to_call);

				//	Use	format	with	"tel:"	and	phone	number	to	create	phoneNumber.

				String	phoneNumber	=	String.format("tel:	%s",

																																							textView.getText().toString());

				//	Create	the	intent.

				Intent	dialIntent	=	new	Intent(Intent.ACTION_DIAL);

				//	Set	the	data	for	the	intent	as	the	phone	number.

				dialIntent.setData(Uri.parse(phoneNumber));

				//	If	package	resolves	to	an	app,	send	intent.

				if	(dialIntent.resolveActivity(getPackageManager())	!=	null)	{

								startActivity(dialIntent);

				}	else	{

								Log.e(TAG,	"Can't	resolve	app	for	ACTION_DIAL	Intent.");

				}

}

1.3	Run	the	app

You	can	run	the	app	on	either	an	emulator	or	a	device:

1.	 Click	or	tap	the	phone	icon.	The	dialer	should	appear	with	the	phone	number	ready	to
use,	as	shown	in	the	figure	below:

1.1:	Making	Phone	Calls	-	Part	1

40



1.1:	Making	Phone	Calls	-	Part	1

41



2.	 The		phone_number		string	holds	a	fixed	number	(1-415-555-1212).	You	can	change	the
number	in	the	Phone	app's	dialer	before	calling.

3.	 Use	the	Back	button	to	return	to	the	app.	You	may	need	to	tap	or	click	it	two	or	three
times	to	navigate	backwards	from	the	Phone	app's	dialer	and	Favorites	list.

Solution	code

Android	Studio	project:	PhoneCallDial

Task	2.	Make	a	phone	call	from	within	an	app
In	this	task	you	will	copy	the	PhoneCallDial	app	from	the	previous	task,	refactor	and	rename
it	to	PhoneCallingSample,	and	modify	its	layout	and	code	to	create	an	app	that	enables	a
user	to	enter	a	phone	number	and	perform	the	phone	call	from	within	your	app.

In	the	first	step	you	will	add	the	code	to	make	the	call,	but	the	app	will	work	only	if	telephony
is	enabled,	and	if	the	app's	permission	for	Phone	is	set	manually	in	Settings	on	the	device	or
emulator.

In	subsequent	steps	you	will	do	away	with	setting	this	permission	manually	by	requesting
phone	permission	from	the	user	if	it	is	not	already	granted.	You	will	also	add	a	telephony
check	to	display	a	message	if	telephony	is	not	enabled	and	code	to	monitor	the	phone	state.

2.1	Create	the	app	and	add	permission

1.	 Copy	the	PhoneCallDial	project	folder,	rename	the	folder	to	PhoneCallingSample,	and
refactor	the	app	to	populate	the	new	name	throughout	the	app	project.	(See	the
Appendix	for	instructions	on	copying	a	project.)

2.	 Add	the	following	permission	to	the	AndroidManifest.xml	file	after	the	first	line	(with	the
	package		definition)	and	before	the		<application>		section:

		<uses-permission	android:name="android.permission.CALL_PHONE"	/>

Your	app	can't	make	a	phone	call	without	the		CALL_PHONE		permission	line	in
AndroidManifest.xml.	This	permission	line	enables	a	setting	for	the	app	in	the	Settings
app	that	gives	the	user	the	choice	of	allowing	or	disallowing	use	of	the	phone.	(In	the
next	task	you	will	add	a	way	for	the	user	to	grant	that	permission	from	within	the	app.)

2.2	Create	the	app	layout

1.1:	Making	Phone	Calls	-	Part	1

42

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallDial
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html


1.	 Open	activity_main.xml	to	edit	the	layout.
2.	 Remove	the		contact_name		TextView,	and	replace	the		number_to_call		TextView	with

the	following	EditText	view:

<EditText

				android:id="@+id/editText_main"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_margin="@dimen/activity_horizontal_margin"

				android:inputType="phone"

				android:hint="Enter	a	phone	number"	/>

3.	 After	adding	a	hard-coded	string	for	the		android:hint		attribute,	extract	it	into	the	string
resource		enter_phone	,	and	note	the	following:

You	will	use	the		android:id		for	the	EditText	view	in	your	code	to	retrieve	the
phone	number.
The	EditText	view	uses	the		android:inputType		attribute	set	to		"phone"		for	a
phone-style	numeric	keypad.

4.	 Change	the	ImageButton	as	follows:

i.	 Change	the		android:layout_below	,		android:layout_toRightOf	,	and
	android:layout_toEndOf		attributes	to	refer	to		editText_main	.

ii.	 Add	the		android:visibility		attribute	set	to		visible	.	You	will	control	the	visibility
of	this	ImageButton	from	your	code.

iii.	 Change	the	android:onClick	method	to		callNumber	.	This	will	remain	highlighted
until	you	add	that	method	to	MainActivity.

<ImageButton

		android:id="@+id/phone_icon"

		android:contentDescription="@string/make_a_call"

		android:layout_width="wrap_content"

		android:layout_height="wrap_content"

		android:layout_margin="@dimen/activity_horizontal_margin"

		android:layout_toRightOf="@id/editText_main"

		android:layout_toEndOf="@id/editText_main"

		android:src="@drawable/ic_call_black_24dp"

		android:visibility="visible"

		android:onClick="callNumber"/>

5.	 Add	the	following	Button	at	the	end	of	the	layout,	before	the	ending		</RelativeLayout>	
tag:

1.1:	Making	Phone	Calls	-	Part	1

43



<Button

				android:id="@+id/button_retry"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:contentDescription="Retry"

				android:layout_below="@id/editText_main"

				android:text="Retry"

				android:visibility="invisible"/>

</RelativeLayout>

6.	 After	adding	a	hard-coded	string	"Retry"	for	the		android:contentDescription		attribute,
extract	it	into	the	string	resource		retry	,	and	then	replace	the	hard-coded	string	in	the
	android:text		attribute	to		"@string/retry"	.

7.	 Note	the	following:
You	will	refer	to	the	the		android:id			button_retry		in	your	code.
Make	sure	you	include	the		android:visibility		attribute	set	to		"invisible"	.	It
should	appear	only	if	the	app	detects	that	telephony	is	not	enabled,	or	if	the	user
previously	denied	phone	permission	when	the	app	requested	it.

Your	app's	layout	should	look	like	the	following	figure	(the		button_retry		Button	is	invisible):

1.1:	Making	Phone	Calls	-	Part	1

44



1.1:	Making	Phone	Calls	-	Part	1

45



2.3	Change	the	onClick	method	in	MainActivity

1.	 In	MainActivity,	refactor	and	rename	the		dialNumber()		method	to	call	it		callNumber()	.
2.	 Change	the	first	statement,	which	referred	to	a	TextView,	to	use	an	EditText	view:

public	void	callNumber(View	view)	{

		EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

		...

}

3.	 Change	the	next	statement	to	get	the	phone	number	from	the	EditText	view	(	editText	)
to	create	the	phone	number	URI	string		phoneNumber	:

//	Use	format	with	"tel:"	and	phone	number	to	create	phoneNumber.

String	phoneNumber	=	String.format("tel:	%s",

																																					editText.getText().toString());

4.	 Before	the	intent,	add	code	to	show	a	log	message	and	a	toast	message	with	the	phone
number:

//	Log	the	concatenated	phone	number	for	dialing.

Log.d(TAG,	"Phone	Status:	DIALING:	"	+	phoneNumber);

Toast.makeText(this,

														"Phone	Status:	DIALING:	"	+	phoneNumber,

														Toast.LENGTH_LONG).show();

5.	 Extract		"Phone	Status:	DIALING:	"		to	a	string	resource	(	dial_number	).	Replace	the
second	use	of	the	string	in	the		Toast.makeText()		statement	to
	getString(R.string.dial_number)	.

6.	 Refactor	and	rename	the		dialIntent		implicit	intent	to		callIntent	,	and	replace
	ACTION_DIAL		with		ACTION_CALL	.	As	a	result,	the	statements	should	now	look	like	this:

...

//	Create	the	intent.

Intent	callIntent	=	new	Intent(Intent.ACTION_CALL);

//	Set	the	data	for	the	intent	as	the	phone	number.

callIntent.setData(Uri.parse(phoneNumber));

//	If	package	resolves	to	an	app,	send	intent.

if	(callIntent.resolveActivity(getPackageManager())	!=	null)	{

			startActivity(callIntent);

}	else	{

			Log.e(TAG,	"Can't	resolve	app	for	ACTION_CALL	Intent.");

}

...

The	full	method	should	now	look	like	the	following:

1.1:	Making	Phone	Calls	-	Part	1

46



public	void	callNumber()	{

				EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

				//	Use	format	with	"tel:"	and	phone	number	to	create	phoneNumber.

				String	phoneNumber	=	String.format("tel:	%s",

																																									editText.getText().toString());

				//	Log	the	concatenated	phone	number	for	dialing.

				Log.d(TAG,	getString(R.string.dial_number)	+	phoneNumber);

				Toast.makeText(this,

																		getString(R.string.dial_number)	+	phoneNumber,

																		Toast.LENGTH_LONG).show();

				//	Create	the	intent.

				Intent	callIntent	=	new	Intent(Intent.ACTION_CALL);

				//	Set	the	data	for	the	intent	as	the	phone	number.

				callIntent.setData(Uri.parse(phoneNumber));

				//	If	package	resolves	to	an	app,	send	intent.

				if	(callIntent.resolveActivity(getPackageManager())	!=	null)	{

								startActivity(callIntent);

				}	else	{

								Log.e(TAG,	"Can't	resolve	app	for	ACTION_CALL	Intent.");

				}

}

2.4	Run	the	app

When	you	run	the	app,	the	app	may	crash	with	the	following	screen	depending	on	whether
the	device	or	emulator	has	been	previously	set	to	allow	the	app	to	make	phone	calls:

1.1:	Making	Phone	Calls	-	Part	1

47



1.1:	Making	Phone	Calls	-	Part	1

48



In	some	versions	of	Android,	this	permission	is	turned	on	by	default.	In	others,	this
permission	is	turned	off	by	default.

To	set	the	app's	permission	on	a	device	or	emulator	instance,	perform	the	function	that	a
user	would	perform:	choose	Settings	>	Apps	>	Phone	Calling	Sample	>	Permissions	on
the	device	or	emulator,	and	turn	on	the	Phone	permission	for	the	app.	Since	the	user	can
turn	on	or	off	Phone	permission	at	any	time,	you	have	to	add	a	check	in	your	app	for	this
permission,	and	request	it	from	the	user	if	required.	You	will	do	this	in	the	next	task.

If	you	don't	have	cellular	service	on	your	device,	or	if	telephony	is	not	enabled,	you	can	test
the	app	using	two	emulator	instances—one	emulator	instance	calls	the	other	one.	Follow
these	steps:

1.	 To	launch	an	emulator	directly	from	the	AVD	Manager,	choose	Tools	>	Android	>	AVD
Manager.

2.	 Double-click	a	predefined	device.	Note	the	number	that	appears	in	the	emulator's
window	title	on	the	far	right,	as	shown	in	the	figure	below	as	#1	(5556).	This	is	the	port

number	of	the	emulator	instance.	

3.	 Open	the	Android	Studio	project	for	the	app,	if	it	isn't	already	open.

1.1:	Making	Phone	Calls	-	Part	1

49



4.	 Run	the	app,	but	choose	another	emulator—not	the	one	that	is	already	running.	Android
Studio	launches	the	other	emulator.

5.	 In	the	app,	enter	the	port	number	of	the	other	emulator	rather	than	a	real	phone	number.

6.	 Click	the	call	button	in	the	app.	The	emulator	shows	the	phone	call	starting	up,	as
shown	in	the	figure	below.

1.1:	Making	Phone	Calls	-	Part	1

50



1.1:	Making	Phone	Calls	-	Part	1

51



The	other	emulator	instance	should	now	be	receiving	the	call,	as	shown	in	the	figure
below:

1.1:	Making	Phone	Calls	-	Part	1

52



1.1:	Making	Phone	Calls	-	Part	1

53



7.	 Click	Answer	or	Dismiss	on	the	emulator	receiving	the	call.	If	you	click	Answer,	also
click	the	red	Hang-up	button	to	end	the	call.

1.1:	Making	Phone	Calls	-	Part	1

54



1.1:	Making	Phone	Calls	-	Part	1

55



End	of	Part	1	-	Continue	with	Part	2

1.1:	Making	Phone	Calls	-	Part	1

56



1.2:	Part	2	-	Making	Phone	Calls
Contents:

Task	3:	Check	for	telephony	service	and	request	permission
Task	4:	Monitor	the	phone	state
Coding	challenge
Summary
Related	concept
Learn	more

Task	3.	Check	for	telephony	service	and
request	permission
If	telephony	features	are	not	enabled	for	a	device,	your	app	should	detect	that	and	disable
the	phone	features.

In	addition,	your	app	must	always	get	permission	to	use	anything	that	is	not	part	of	the	app
itself.	In	the	previous	task	you	added	the	following	permission	to	the	AndroidManifest.xml
file:

<uses-permission	android:name="android.permission.CALL_PHONE"	/>

This	statement	enables	a	permission	setting	for	this	app	in	Settings.	The	user	can	allow	or
disallow	this	permission	at	any	time	in	Settings.	You	can	add	code	to	request	permission	if
the	user	has	turned	off	phone	permission.

3.1	Check	if	telephony	services	are	enabled

1.	 Open	the	Android	Studio	project	for	the	PhoneCallingSample	app,	if	it	isn't	already
open.

2.	 At	the	top	of	MainActivity	below	the	class	definition,	define	a	variable	for	the
TelephonyManager	class	object:

private	TelephonyManager	mTelephonyManager;

3.	 Add	the	following	statement	to	onCreate()	method	in	MainActivity	to	use	the	string
constant		TELEPHONY_SERVICE		with		getSystemService()		and	assign	it	to

1.2:	Making	Phone	Calls	-	Part	2

57

https://developer.android.com/reference/android/telephony/TelephonyManager.html


	mTelephonyManager	.	This	gives	you	access	to	some	of	the	telephony	features	of	the
device.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			//	Create	a	telephony	manager.

			mTelephonyManager	=	(TelephonyManager)

																														getSystemService(TELEPHONY_SERVICE);

4.	 Create	a	method	in	MainActivity	to	check	if	telephony	is	enabled:

		private	boolean	isTelephonyEnabled()	{

						if	(mTelephonyManager	!=	null)	{

										if	(mTelephonyManager.getSimState()	==

																																TelephonyManager.SIM_STATE_READY)	{

														return	true;

										}

						}

						return	false;

		}

5.	 Call	the	above	method	in	the		onCreate()		method,	right	after	assigning
	mTelephonyManager	,	in	an		if		statement	to	take	action	if	telephony	is	enabled.	The
action	should	be	to	log	a	message	(to	show	that	telephony	is	enabled),	and	include	a
comment	about	checking	permission,	which	you	will	add	in	the	next	step.	If	telephony	is
not	enabled,	display	a	toast	message,	log	a	message,	and	disable	the	call	button:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

		...				

		mTelephonyManager	=	(TelephonyManager)

																				getSystemService(TELEPHONY_SERVICE);

		if	(isTelephonyEnabled())	{

							Log.d(TAG,	"Telephony	is	enabled");

							//	ToDo:	Check	for	phone	permission.

							//	ToDo:	Register	the	PhoneStateListener.

		}	else	{

							Toast.makeText(this,

																				"TELEPHONY	NOT	ENABLED!	",

																				Toast.LENGTH_LONG).show();

							Log.d(TAG,	"TELEPHONY	NOT	ENABLED!	");

							//	Disable	the	call	button

							disableCallButton();

		}

}

1.2:	Making	Phone	Calls	-	Part	2

58



6.	 Extract	the	hard-coded	strings	in	the	above	code	to	string	resources:

"	Telephony	is	enabled"	:		telephony_enabled	
	"TELEPHONY	NOT	ENABLED!	"	:		telephony_not_enabled	

7.	 Create	the		disableCallButton()		method	in	MainActivity,	and	code	to:

Display	a	toast	to	notify	the	user	that	the	phone	feature	is	disabled.
Find	and	then	set	the	call	button	to	be	invisible	so	that	the	user	can't	make	a	call.
If	telephony	is	enabled	(but	the	phone	permission	had	not	been	granted),	set	the
Retry	button	to	be	visible,	so	that	the	user	can	start	the	activity	again	and	allow
permission.

private	void	disableCallButton()	{

		Toast.makeText(this,

												"Phone	calling	disabled",	Toast.LENGTH_LONG).show();

		ImageButton	callButton	=	(ImageButton)	findViewById(R.id.phone_icon);

		callButton.setVisibility(View.INVISIBLE);

		if	(isTelephonyEnabled())	{

						Button	retryButton	=	(Button)	findViewById(R.id.button_retry);

						retryButton.setVisibility(View.VISIBLE);

		}

}

8.	 Extract	a	string	resource	(	phone_disabled	)	for	the	hard-coded	string	"Phone	calling
disabled"	in	the	toast	statement.

9.	 Create	an		enableCallButton()		method	in	MainActivity	that	finds	and	then	sets	the	call
button	to	be	visible:

private	void	enableCallButton()	{

		ImageButton	callButton	=	(ImageButton)	findViewById(R.id.phone_icon);

		callButton.setVisibility(View.VISIBLE);

}

10.	 Create	the		retryApp()		method	in	MainActivity	that	will	be	called	when	the	user	clicks
the	visible	Retry	button.	Add	code	to:

Call		enableCallButton()		to	enable	the	call	button.
Create	an	intent	to	start	(in	this	case,	restart)	the	activity.

public	void	retryApp(View	view)	{

			enableCallButton();

			Intent	intent	=	getPackageManager()

												.getLaunchIntentForPackage(getPackageName());

			startActivity(intent);

}

11.	 Add	the		android:onClick		attribute	to	the	Retry	button	to	call	retryApp:

1.2:	Making	Phone	Calls	-	Part	2

59



<Button

			...

			android:id="@+id/button_retry"

			...

			android:onClick="retryApp"/>

3.2	Request	permission	for	phone	calling

1.	 At	the	top	of	MainActivity	below	the	class	definition,	define	a	global	constant	for	the	call-
phone	permission	request	code,	and	set	it	to	1:

private	static	final	int	MY_PERMISSIONS_REQUEST_CALL_PHONE	=	1;

Why	the	integer	1?	Each	permission	request	needs	three	parameters:	the		context	,	a
string	array	of	permissions,	and	an	integer		requestCode	.	The		requestCode		is	a	code
attached	to	the	request,	and	can	be	any	integer	that	suits	your	use	case.	When	a	result
returns	back	to	the	activity,	it	contains	this	code	and	uses	it	to	differentiate	multiple
permission	results	from	each	other.

2.	 In	MainActivity,	create	a	private	method	called		checkForPhonePermission		to	check	for
	CALL_PHONE		permission,	which	returns		void	.	You	put	this	code	in	a	separate	method
because	you	will	use	it	more	than	once:

private	void	checkForPhonePermission()	{

		if	(ActivityCompat.checkSelfPermission(this,

																				Manifest.permission.CALL_PHONE)	!=

																				PackageManager.PERMISSION_GRANTED)	{

		Log.d(TAG,	"PERMISSION	NOT	GRANTED!");

		ActivityCompat.requestPermissions(this,

																				new	String[]{Manifest.permission.CALL_PHONE},

																				MY_PERMISSIONS_REQUEST_CALL_PHONE);

		}	else	{

						//	Permission	already	granted.	Enable	the	call	button.

						enableCallButton();

		}

}

3.	 Use		checkSelfPermission()		to	determine	whether	your	app	has	been	granted	a
particular	permission	by	the	user.	If	permission	has	not	been	granted	by	the	user,	use
the		requestPermissions()		method	to	display	a	standard	dialog	for	the	user	to	grant
permission.

4.	 When	your	app	calls		requestPermissions()	,	the	system	shows	a	standard	dialog	to	the
user,	as	shown	in	the	figure	below.

1.2:	Making	Phone	Calls	-	Part	2

60

https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)


1.2:	Making	Phone	Calls	-	Part	2

61



5.	 Extract	the	hard-coded	string		"PERMISSION	NOT	GRANTED!"		in	the	above	code	to	the	string
resource		permission_not_granted	.

6.	 In	the		onCreate()		method	after	checking	to	see	if	telephony	is	enabled,	add	a	call	to
	checkForPhonePermission()	:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

...

if	(isTelephonyEnabled())	{

				//	Check	for	phone	permission.

				checkForPhonePermission();

				//	ToDo:	Register	the	PhoneStateListener.

				...

7.	 When	the	user	responds	to	the	request	permission	dialog,	the	system	invokes	your
app's		onRequestPermissionsResult()		method,	passing	it	the	user	response.	Override
that	method	to	find	out	whether	the	permission	was	granted:

@Override

public	void	onRequestPermissionsResult(int	requestCode,

																String	permissions[],	int[]	grantResults)	{

			//	Check	if	permission	is	granted	or	not	for	the	request.

			...

}

8.	 For	your	implementation	of		onRequestPermissionsResult()	,	use	a		switch		statement
with	each		case		based	on	the	value	of		requestCode	.	Use	one		case		to	check	if	the
permission	is	the	one	you	defined	as		MY_PERMISSIONS_REQUEST_CALL_PHONE	:

1.2:	Making	Phone	Calls	-	Part	2

62

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.OnRequestPermissionsResultCallback.html#onRequestPermissionsResult(int,%20java.lang.String[],%20int[])


...

//	Check	if	permission	is	granted	or	not	for	the	request.

switch	(requestCode)	{

				case	MY_PERMISSIONS_REQUEST_CALL_PHONE:	{

								if	(permissions[0].equalsIgnoreCase

																				(Manifest.permission.CALL_PHONE)

																				&&	grantResults[0]	==

																				PackageManager.PERMISSION_GRANTED)	{

												//	Permission	was	granted.

								}	else	{

												//	Permission	denied.

												Log.d(TAG,	"Failure	to	obtain	permission!");

												Toast.makeText(this,

																								"Failure	to	obtain	permission!",

																								Toast.LENGTH_LONG).show();

												//	Disable	the	call	button

												disableCallButton();

								}

				}

}

9.	 Extract	the	hard-coded	string		"Failure	to	obtain	permission!"		in	the	above	code	to	the
string	resource		failure_permission	,	and	note	the	following:

The	user's	response	to	the	request	dialog	is	returned	in	the		permissions		array
(index		0		if	only	one	permission	is	requested	in	the	dialog).	The	code	snippet
above	compares	this	to	the	corresponding	grant	result,	which	is	either
	PERMISSION_GRANTED		or		PERMISSION_DENIED	.
If	the	user	denies	a	permission	request,	your	app	should	take	appropriate	action.
For	example,	your	app	might	disable	the	functionality	that	depends	on	this
permission	and	show	a	dialog	explaining	why	it	could	not	perform	it.	For	now,	log	a
debug	message,	display	a	toast	to	show	that	permission	was	not	granted,	and
disable	the	call	button	with		disableCallButton()	.

3.3	Run	the	app	and	test	permission

1.	 Run	the	app	once.	After	running	the	app,	turn	off	the	Phone	permission	for	the	app	on
your	device	or	emulator	so	that	you	can	test	the	permission-request	function:

i.	 Choose	Settings	>	Apps	>	Phone	Calling	Sample	>	Permissions	on	the	device
or	emulator.

ii.	 Turn	off	the	Phone	permission	for	the	app.

2.	 Run	the	app	again.	You	should	see	the	request	dialog	in	the	figure	in	the	previous
section.

1.2:	Making	Phone	Calls	-	Part	2

63



i.	 Tap	Deny	to	deny	permission.	The	app	should	display	a	toast	message	showing
the	failure	to	gain	permission,	and	the	Retry	button.	The	phone	icon	should
disappear.

ii.	 Tap	Retry,	and	when	the	request	dialog	appears,	tap	Allow.	The	phone	icon
should	reappear.	Test	the	app's	ability	to	make	a	phone	call.

3.	 Since	the	user	might	turn	off	Phone	permission	while	the	app	is	still	running,	add	the
same	permission	check	method	to	the		callNumber()		method—after	the	intent	resolves
to	a	package,	as	shown	below—to	check	for	permission	right	before	making	a	call:

//	If	package	resolves	to	an	app,	check	for	phone	permission,

//	and	send	intent.

if	(callIntent.resolveActivity(getPackageManager())	!=	null)	{

			checkForPhonePermission();

			startActivity(callIntent);

}	else	{

			Log.e(TAG,	"Can't	resolve	app	for	ACTION_CALL	Intent");

}

4.	 Run	the	app.	If	the	user	changes	the	Phone	permission	for	the	app	while	the	app	is
running,	the	request	dialog	appears	again	for	the	user	to	Allow	or	Deny	the	permission.

i.	 Click	Allow	to	test	the	app's	ability	to	make	a	phone	call.	The	app	should	make	the
call	without	a	problem.

ii.	 Jump	to	the	Settings	app	to	turn	off	Phone	permission	for	the	app	(the	app	should
still	be	running):

i.	 Choose	Settings	>	Apps	>	Phone	Calling	Sample	>	Permissions	on	the
device	or	emulator.

ii.	 Turn	off	the	Phone	permission	for	the	app.

iii.	 Go	back	to	the	app	and	try	to	make	a	call.	The	request	dialog	should	appear	again.
This	time,	Click	Deny	to	deny	permission	to	make	a	phone	call.	The	app	should
display	a	toast	message	showing	the	failure	to	gain	permission,	and	the	Retry
button.	The	phone	icon	should	disappear.

Task	4.	Monitor	the	phone	state
You	can	monitor	the	phone	state	with	PhoneStateListener,	which	monitors	changes	in
specific	telephony	states.	You	can	then	show	the	user	the	state	in	a	toast	message,	so	that
the	user	can	see	if	the	phone	is	idle	or	off	the	hook.

1.2:	Making	Phone	Calls	-	Part	2

64

https://developer.android.com/reference/android/telephony/PhoneStateListener.html


When	the	phone	call	finishes	and	the	phone	switches	to	the	idle	state,	your	app's	activity
resumes	if	the	app	is	running	on	KitKat	(version	19)	or	newer	versions.	However,	if	the	app
is	running	on	a	version	of	Android	older	than	KitKat	(version	19),	the	Phone	app	remains
active.	You	can	check	the	phone	state	and	restart	the	activity	if	the	state	is	idle.

To	use	PhoneStateListener,	you	need	to	register	a	listener	object	using	the
TelephonyManager	class,	which	provides	access	to	information	about	the	telephony	services
on	the	device.	Create	a	new	class	that	extends	PhoneStateListener	to	perform	actions
depending	on	the	phone	state.	You	can	then	register	the	listener	object	in	the		onCreate()	
method	of	the	activity,	using	the	TelephonyManager	class.

4.1	Set	the	permission	and	logging	tag

1.	 Open	the	Android	Studio	project	for	the	PhoneCallingSample	app,	if	it	isn't	already
open.

2.	 Add	the	following		READ_PHONE_STATE		permission	to	the	AndroidManifest.xml	file	after
after	the	CALL_PHONE	permission,	and	before	the		<application>		section:

		<uses-permission	android:name="android.permission.CALL_PHONE"	/>

		<uses-permission	android:name="android.permission.READ_PHONE_STATE"	/>

Monitoring	the	state	of	a	phone	call	is	permission-protected.	This	permission	is	in
addition	to	the		CALL_PHONE		permission.

4.2	Create	a	class	that	extends	PhoneStateListener

1.	 To	create	a	listener	object	and	listen	to	the	phone	state,	create	a	private	inner	class
called		MyPhoneCallListener		in	MainActivity	that	extends	PhoneStateListener.

private	class	MyPhoneCallListener	extends	PhoneStateListener	{

...

}

2.	 Within	this	class,	implement	the		onCallStateChanged()		method	of	PhoneStateListener
to	take	actions	based	on	the	phone	state.	The	code	below	uses	a		switch		statement
with	constants	of	the	TelephonyManager	class	to	determine	which	of	three	states	the
phone	is	in:		CALL_STATE_RINGING	,		CALL_STATE_OFFHOOK	,	and		CALL_STATE_IDLE	:

1.2:	Making	Phone	Calls	-	Part	2

65

https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html#onCallStateChanged(int,%20java.lang.String)
https://developer.android.com/reference/android/telephony/TelephonyManager.html


@Override

public	void	onCallStateChanged(int	state,	String	incomingNumber)	{

		switch	(state)	{

						case	TelephonyManager.CALL_STATE_RINGING:

										//	Incoming	call	is	ringing	(not	used	for	outgoing	call).

										break;

						case	TelephonyManager.CALL_STATE_OFFHOOK:

										//	Phone	call	is	active	--	off	the	hook.

										break;

						case	TelephonyManager.CALL_STATE_IDLE:

										//	Phone	is	idle	before	and	after	phone	call.

										break;

						default:

										//	Must	be	an	error.	Raise	an	exception	or	just	log	it.

										break;

		}

}

3.	 Just	above	the		switch	(state)		line,	create	a		String		called		message		to	use	in	a	toast
as	a	prefix	for	the	phone	state:

...

//	Define	a	string	for	the	message	to	use	in	a	toast.

String	message	=	"Phone	Status:	";

switch	(state)	{	...

4.	 Extract	the	string		"Phone	Status:	"		to	the	string	resource		phone_status	.
5.	 For	the		CALL_STATE_RINGING		state,	assemble	a	message	for	logging	and	displaying	a

toast	with	the	incoming	phone	number:

...

switch	(state)	{

		case	TelephonyManager.CALL_STATE_RINGING:

							//	Incoming	call	is	ringing	(not	used	for	outgoing	call).

							message	=	message	+	"RINGING,	number:	"	+	incomingNumber;

							Toast.makeText(MainActivity.this,	message,

																									Toast.LENGTH_SHORT).show();

							Log.i(TAG,	message);

							break;

		...

6.	 Extract		"RINGING,	number:	"		to	the	string	resource		ringing	.
7.	 Add	a	boolean		returningFromOffHook	,	set	to		false	,	at	the	top	of	the

	MyPhoneCallListener		declaration,	in	order	to	use	it	with	the	the		CALL_STATE_OFFHOOK	
state:

1.2:	Making	Phone	Calls	-	Part	2

66



private	class	MyPhoneCallListener	extends	PhoneStateListener	{

			private	boolean	returningFromOffHook	=	false;

			...

}

Tip:	An	app	running	on	Android	versions	prior	to	KitKat	(version	19)	doesn't	resume
when	the	phone	state	returns	to		CALL_STATE_IDLE		from		CALL_STATE_OFFHOOK		at	the	end
of	a	call.	The	boolean		returningFromOffHook		is	used	as	a	flag,	and	set	to		true		when
the	state	is		CALL_STATE_OFFHOOK	,	so	that	when	the	state	is	back	to		CALL_STATE_IDLE	,	the
flag	designates	an	end-of-call	in	order	to	restart	the	app's	activity.

8.	 For	the		CALL_STATE_OFFHOOK		state,	assemble	a	message	for	logging	and	displaying	a
toast,	and	set	the		returningFromOffHook		boolean	to		true	.

...

switch	(state)	{

					case	TelephonyManager.CALL_STATE_OFFHOOK:

															//	Phone	call	is	active	--	off	the	hook.

															message	=	message	+	"OFFHOOK";

															Toast.makeText(MainActivity.this,	message,

																																				Toast.LENGTH_SHORT).show();

															Log.i(TAG,	message);

															returningFromOffHook	=	true;

															break;

					...

9.	 Extract		"OFFHOOK"		to	the	string	resource		offhook	.
10.	 For	the		CALL_STATE_IDLE		state,	log	and	display	a	toast,	and	check	if

	returningFromOffHook		is		true	;	if	so,	restart	the	activity	if	the	version	of	Android	is
earlier	than	KitKat.

1.2:	Making	Phone	Calls	-	Part	2

67



...

switch	(state)	{

								case	TelephonyManager.CALL_STATE_IDLE:

											//	Phone	is	idle	before	and	after	phone	call.

											//	If	running	on	version	older	than	19	(KitKat),

											//	restart	activity	when	phone	call	ends.

											message	=	message	+	"IDLE";

											Toast.makeText(MainActivity.this,	message,

																														Toast.LENGTH_SHORT).show();

											Log.i(TAG,	message);

											if	(returningFromOffHook)	{

															//	No	need	to	do	anything	if	>=	version	KitKat.

															if	(Build.VERSION.SDK_INT	<	Build.VERSION_CODES.KITKAT)	{

																			Log.i(TAG,	"Restarting	app");

																			//	Restart	the	app.

																			Intent	intent	=	getPackageManager()

																							.getLaunchIntentForPackage(

																							.getPackageName());

																				intent.addFlags

																							(Intent.FLAG_ACTIVITY_CLEAR_TOP);

																				startActivity(intent);

															}

												}

												break;

										...

If	the	app	is	running	on	KitKat	(version	19)	or	newer	versions,	there	is	no	need	to	restart
the	activity	after	the	phone	call	ends.	But	if	the	app	is	running	on	a	version	of	Android
older	than	KitKat	(version	19),	the	code	must	restart	the	current	activity	so	that	the	user
can	return	to	the	app	after	the	call	ends.

Tip:	The	code	also	sets		FLAG_ACTIVITY_CLEAR_TOP		so	that	instead	of	launching	a	new
instance	of	the	current	activity,	any	other	activities	on	top	of	the	current	activity	are
closed	and	an	intent	is	delivered	to	the	(now	on	top)	current	activity.	This	flag	helps	you
manage	a	stack	of	activities	in	an	app.

11.	 Extract		"IDLE"		to	the	string	resource		idle	,	and	extract		"Restarting	app"		to	the
string	resource		restarting_app	.

The	code	below	shows	the	entire		onCallStateChanged()		method:

...

@Override

public	void	onCallStateChanged(int	state,	String	incomingNumber)	{

				//	Define	a	string	for	the	message	to	use	in	a	toast.

				String	message	=	getString(R.string.phone_status);

				switch	(state)	{

								case	TelephonyManager.CALL_STATE_RINGING:

												//	Incoming	call	is	ringing	(not	used	for	outgoing	call).

1.2:	Making	Phone	Calls	-	Part	2

68

https://developer.android.com/reference/android/content/Intent.html#FLAG_ACTIVITY_CLEAR_TOP


												message	=	message	+

																												getString(R.string.ringing)	+	incomingNumber;

												Toast.makeText(MainActivity.this,	message,

																												Toast.LENGTH_SHORT).show();

												Log.i(TAG,	message);

												break;

								case	TelephonyManager.CALL_STATE_OFFHOOK:

												//	Phone	call	is	active	--	off	the	hook.

												message	=	message	+	getString(R.string.offhook);

												Toast.makeText(MainActivity.this,	message,

																												Toast.LENGTH_SHORT).show();

												Log.i(TAG,	message);

												returningFromOffHook	=	true;

												break;

								case	TelephonyManager.CALL_STATE_IDLE:

												//	Phone	is	idle	before	and	after	phone	call.

												//	If	running	on	version	older	than	19	(KitKat),

												//	restart	activity	when	phone	call	ends.

												message	=	message	+	getString(R.string.idle);

												Toast.makeText(MainActivity.this,	message,

																												Toast.LENGTH_SHORT).show();

												Log.i(TAG,	message);

												if	(returningFromOffHook)	{

																//	No	need	to	do	anything	if	>=	version	KitKat.

																if	(Build.VERSION.SDK_INT	<	Build.VERSION_CODES.KITKAT)	{

																				Log.i(TAG,	getString(R.string.restarting_app));

																				//	Restart	the	app.

																				Intent	intent	=	getPackageManager()

																																				.getLaunchIntentForPackage(

																																				.getPackageName());

																				intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

																				startActivity(intent);

																}

												}

												break;

								default:

												message	=	message	+	"Phone	off";

												Toast.makeText(MainActivity.this,	message,

																																				Toast.LENGTH_SHORT).show();

												Log.i(TAG,	message);

												break;

				}

}

...

4.3	Register	the	PhoneStateListener

1.	 At	the	top	of	MainActivity	below	the	class	definition,	define	a	variable	for	the
PhoneStateListener:

1.2:	Making	Phone	Calls	-	Part	2

69

https://developer.android.com/reference/android/telephony/PhoneStateListener.html


private	MyPhoneCallListener	mListener;

2.	 In	the		onCreate()		method,	add	the	following	code	after	checking	for	telephony	and
permission:

...

if	(isTelephonyEnabled())	{

			...

			checkForPhonePermission();

			//	Register	the	PhoneStateListener	to	monitor	phone	activity.

			mListener	=	new	MyPhoneCallListener();

			telephonyManager.listen(mListener,

																PhoneStateListener.LISTEN_CALL_STATE);

}	else	{	...

3.	 You	must	also	unregister	the	listener	in	the	activity's	onDestroy()	method.	Override	the
	onDestroy()		method	by	adding	the	following	code:

@Override

protected	void	onDestroy()	{

			super.onDestroy();

			if	(isTelephonyEnabled())	{

							telephonyManager.listen(mListener,

																												PhoneStateListener.LISTEN_NONE);

			}

}

4.4	Run	the	app

1.	 Run	the	app.	If	the	user	changes	the	Phone	permission	for	the	app	while	the	app	is
running,	the	request	dialog	appears	again	for	the	user	to	Allow	or	Deny	the	permission.
Click	Allow	to	test	the	app's	ability	to	make	a	phone	call.

2.	 After	entering	a	phone	number	and	clicking	the	call	button,	the	emulator	or	device
shows	the	phone	call	starting	up,	as	shown	in	the	figure	below.	A	toast	message
appears	showing	the	phone	number	(left	side	of	figure),	and	the	toast	message	changes
to	show	a	new	status	of	"OFFHOOK"	(right	side	of	figure)	after	the	call	has	started.

1.2:	Making	Phone	Calls	-	Part	2

70

https://developer.android.com/reference/android/app/Activity.html#onDestroy()


3.	 The	other	emulator	instance	or	device	should	now	be	receiving	the	call,	as	shown	in	the
figure	below.	Click	Answer	or	Dismiss	on	the	device	or	emulator	receiving	the	call.

1.2:	Making	Phone	Calls	-	Part	2

71



1.2:	Making	Phone	Calls	-	Part	2

72



4.	 If	you	click	Answer,	be	sure	to	also	click	the	red	Hang-up	button	to	finish	the	call,	as
shown	in	the	figure	below.

1.2:	Making	Phone	Calls	-	Part	2

73



1.2:	Making	Phone	Calls	-	Part	2

74



After	you	hang	up,	the	app	should	reappear	with	a	toast	message	showing	that	the	phone	is
now	in	the	idle	state,	as	shown	in	the	figure	below.

1.2:	Making	Phone	Calls	-	Part	2

75



1.2:	Making	Phone	Calls	-	Part	2

76



Solution	code

Android	Studio	project:	PhoneCallingSample

Coding	challenge
Note:	All	coding	challenges	are	optional	and	are	not	prerequisites	for	later	lessons.
Challenge:

1.	 Use	the	normalizeNumber()	method	in	the	PhoneNumberUtils	class	to	remove
characters	other	than	digits	from	the	phone	number	after	the	user	has	entered	it.	This
method	was	added	to	API	level	21.	If	you	need	your	app	to	run	on	older	versions,
include	a	check	for	the	version	that	uses	the	normalizeNumber()	method	only	if	the
version	is	older	than	Lollipop.	Your	app	already	uses	a	log	statement	to	show	the	phone
number	as	dialed,	so	if	the	user	enters	"1-415-555-1212"	the	log	message	should	show
that	the	number	was	normalized:

D/MainActivity:	Phone	Status:	DIALING:	tel:	14155551212

2.	 Add	an	invisible	TextView	to	the	PhoneCallingSample	app.	This	TextView	should	appear
below	the	invisible	Retry	button,	but	only	when	the	phone	is	ringing	(indicating	an
incoming	call),	and	it	should	show	the	phone	number	of	the	caller.

If	you	have	both	emulators	open	as	described	previously,	install	the	app	on	both	emulators.
You	can	then	test	an	incoming	call	by	using	the	app	on	one	emulator	to	call	the	other
emulator.

Tip:	You	can	also	emulate	receiving	a	call	by	clicking	the	…	(More)	icon	at	the	bottom	of	the
emulator's	toolbar	on	the	right	side.	Click	Phone	in	the	left	column	to	see	the	extended
phone	controls,	and	click	Call	Device	to	call	the	emulator.

Android	Studio	project:	PhoneCallingSampleChallenge

Summary
To	send	an	intent	to	the	Phone	app	with	a	phone	number,	your	app	needs	to	prepare	a
URI	for	the	phone	number	as	a	string	prefixed	by	"tel:"	(for	example	tel:14155551212).
To	dial	a	phone	number,	create	an	implicit	intent	with		ACTION_DIAL	,	and	set	the	phone
number	URI	as	the	data	for	the	intent	with		setData()	:

1.2:	Making	Phone	Calls	-	Part	2

77

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSample
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#normalizeNumber(java.lang.String)
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html
https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html#normalizeNumber(java.lang.String)
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSampleChallenge


Intent	callIntent	=	new	Intent(Intent.ACTION_DIAL);

callIntent.setData(Uri.parse(phoneNumber));

For	phone	permission,	add	the	following	to	the	AndroidManifest.xml	file:

		<uses-permission	android:name="android.permission.CALL_PHONE"	/>

To	make	a	phone	call,	create	an	implicit	intent	with		ACTION_CALL	,	and	set	the	phone
number	URI	as	the	data	for	the	intent	with		setData()	:

Intent	callIntent	=	new	Intent(Intent.ACTION_CALL);

callIntent.setData(Uri.parse(phoneNumber));

To	check	if	telephony	is	enabled,	use	the	string	constant		TELEPHONY_SERVICE		with
	getSystemService()		to	retrieve	a	TelephonyManager,	which	gives	you	access	to
telephony	features.
Use		checkSelfPermission()		to	determine	whether	your	app	has	been	granted	a
particular	permission	by	the	user.	If	permission	has	not	been	granted,	use	the
	requestPermissions()		method	to	display	a	standard	dialog	for	the	user	to	grant
permission.
To	monitor	the	phone	state	with	PhoneStateListener,	register	a	listener	object	using	the
TelephonyManager	class.
For	phone	monitoring	permission,	add	the	following	to	the	AndroidManifest.xml	file:

		<uses-permission	android:name="android.permission.READ_PHONE_STATE"	/>

To	monitor	phone	states,	create	a	private	class	that	extends	PhoneStateListener,	and
override	the		onCallStateChanged()		method	of	PhoneStateListener	to	take	different
actions	based	on	the	phone	state:		CALL_STATE_RINGING	,		CALL_STATE_OFFHOOK	,	or
	CALL_STATE_IDLE	.

Related	concept
Phone	Calls

Learn	more
Android	developer	documentation:

Common	Intents
TelephonyManager

1.2:	Making	Phone	Calls	-	Part	2

78

https://developer.android.com/reference/android/content/Context.html#TELEPHONY_SERVICE
https://developer.android.com/reference/android/content/Context.html#getSystemService(java.lang.String)
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html#onCallStateChanged(int,%20java.lang.String)
https://developer.android.com/guide/components/intents-common.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html


PhoneStateListener
Requesting	Permissions	at	Run	Time
checkSelfPermission
Run	Apps	on	the	Android	Emulator
Intents	and	Intent	Filters
Intent

Stack	Overflow:
How	to	format	a	phone	number	using	PhoneNumberUtils?
How	to	make	phone	call	using	intent	in	android?
Ringing	myself	using	android	emulator
Fake	Incoming	Call	Android
Simulating	incoming	call	or	sms	in	Android	Studio

Other:
User	(beginner)	tutorial:	How	to	Make	Phone	Calls	with	Android
Developer	Video:	How	to	Make	a	Phone	Call

1.2:	Making	Phone	Calls	-	Part	2

79

https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/studio/run/emulator.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html
http://stackoverflow.com/questions/6106859/how-to-format-a-phone-number-using-phonenumberutils
http://stackoverflow.com/questions/4275678/how-to-make-phone-call-using-intent-in-android
http://stackoverflow.com/questions/2577785/ringing-myself-using-android-emulator
http://stackoverflow.com/questions/4964703/fake-incoming-call-android
http://stackoverflow.com/questions/27638462/simulating-incoming-call-or-sms-in-android-studio
http://www.beginandroid.com/phonecall.shtml
https://youtu.be/3PHDcQOGFtg


2:	SMS	Messages
Contents:

Sending	and	receiving	SMS	messages
Using	an	intent	to	launch	an	SMS	app
Sending	SMS	messages	from	your	app
Receiving	SMS	messages
Related	practical
Learn	more

Android	devices	can	send	and	receive	messages	to	or	from	any	other	phone	that	supports
Short	Message	Service	(SMS).	Android	offers	the	Messenger	app	that	can	send	and	receive
SMS	messages.	A	host	of	third-party	apps	for	sending	and	receiving	SMS	messages	are
also	available	in	Google	Play.

This	chapter	describes	how	to	use	SMS	in	your	app.	You	can	add	code	to	your	app	to:

Launch	an	SMS	messaging	app	from	your	app	to	handle	all	SMS	communication.
Send	an	SMS	message	from	within	your	app.
Receive	SMS	messages	in	your	app.

Note:	The	SMS	protocol	was	primarily	designed	for	user-to-user	communication	and	is	not
well-suited	for	apps	that	want	to	transfer	data.	You	should	not	use	SMS	to	send	data
messages	from	a	web	server	to	your	app	on	a	user	device.	SMS	is	neither	encrypted	nor
strongly	authenticated	on	either	the	network	or	the	device.

Sending	and	receiving	SMS	messages
Access	to	the	SMS	features	of	an	Android	device	is	protected	by	user	permissions.	Just	as
your	app	needs	the	user's	permission	to	use	phone	features,	so	also	does	an	app	need	the
user's	permission	to	directly	use	SMS	features.

However,	your	app	doesn't	need	permission	to	pass	a	phone	number	to	an	installed	SMS
app,	such	as	Messenger,	for	sending	the	message.	The	Messenger	app	itself	is	governed	by
user	permission.

You	have	two	choices	for	sending	SMS	messages:

Use	an	implicit	Intent	to	launch	a	messaging	app	such	as	Messenger,	with	the
ACTION_SENDTO	action.

2:	SMS	Messages

80

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_SENDTO


This	is	the	simplest	choice	for	sending	messages.	The	user	can	add	a	picture	or
other	attachment	in	the	messaging	app,	if	the	messaging	app	supports	adding
attachments.
Your	app	doesn't	need	code	to	request	permission	from	the	user.
If	the	user	has	multiple	SMS	messaging	apps	installed	on	the	Android	phone,	the
App	chooser	will	appear	with	a	list	of	these	apps,	and	the	user	can	choose	which
one	to	use.	(Android	smartphones	will	have	at	least	one,	such	as	Messenger.)
The	user	can	change	the	message	in	the	messaging	app	before	sending	it.
The	user	navigates	back	to	your	app	using	the	Back	button.

Send	the	SMS	message	using	the	sendTextMessage()	method	or	other	methods	of	the
SmsManager	class.

This	is	a	good	choice	for	sending	messages	from	your	app	without	having	to	use
another	installed	app.
Your	code	must	ask	the	user	for	permission	before	sending	the	message	if	the	user
hasn't	already	granted	permission.
The	user	stays	in	your	app	during	and	after	sending	the	message.
You	can	manage	SMS	operations	such	as	dividing	a	message	into	fragments,
sending	a	multipart	message,	get	carrier-dependent	configuration	values,	and	so
on.

To	receive	SMS	messages,	the	best	practice	is	to	use	the	onReceive()	method	of	the
BroadcastReceiver	class.	The	Android	framework	sends	out	system	broadcasts	of	events
such	as	receiving	an	SMS	message,	containing	intents	that	are	meant	to	be	received	using
a	BroadcastReceiver.	Your	app	receives	SMS	messages	by	listening	for	the
SMS_RECEIVED_ACTION	broadcast.

Most	smartphones	and	mobile	phones	support	what	is	known	as	"PDU	mode"	for	sending
and	receiving	SMS.	PDU	(protocol	data	unit)	contains	not	only	the	SMS	message,	but	also
metadata	about	the	SMS	message,	such	as	text	encoding,	the	sender,	SMS	service	center
address,	and	much	more.	To	access	this	metadata,	SMS	apps	almost	always	use	PDUs	to
encode	the	contents	of	a	SMS	message.	The	sendTextMessage()	and
sendMultimediaMessage()	methods	of	the	SmsManager	class	encode	the	contents	for	you.
When	receiving	a	PDU,	you	can	create	an	SmsMessage	object	from	the	raw	PDU	using
createFromPdu().

Using	an	intent	to	launch	an	SMS	app
To	use	an	Intent	to	launch	an	SMS	app,	your	app	needs	to	prepare	a	Uniform	Resource
Identifier	(URI)	for	the	phone	number	as	a	string	prefixed	by	"smsto:"	(as	in
	smsto:14155551212	).	You	can	use	a	hardcoded	phone	number,	such	as	the	phone	number	of

2:	SMS	Messages

81

https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html#SMS_RECEIVED_ACTION
https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html#sendMultimediaMessage(android.content.Context,%20android.net.Uri,%20java.lang.String,%20android.os.Bundle,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/telephony/SmsMessage.html
https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[],%20java.lang.String)
https://developer.android.com/reference/android/content/Intent.html


a	support	message	center,	or	provide	an	EditText	field	in	the	layout	to	enable	the	user	to
enter	a	phone	number.

Tip:	For	details	about	using	methods	in	the	PhoneNumberUtils	class	to	format	a	phone
number	string,	see	the	related	concept	Phone	Calls.

Use	a	button	(such	as	an	ImageButton)	that	the	user	can	tap	to	pass	the	phone	number	to
the	SMS	app.	For	example,	an	app	that	enables	a	user	make	a	phone	call	and/or	send	a
message	to	the	phone	number	might	offer	a	simple	layout	with	a	phone	icon	button	for
calling,	and	a	messaging	icon	button	for	sending	a	message,	as	shown	in	the	figure	below.

2:	SMS	Messages

82

https://developer.android.com/reference/android/telephony/PhoneNumberUtils.html


2:	SMS	Messages

83



To	call	a	method	such	as		smsSendMessage()		that	would	launch	a	messaging	app	with	a
phone	number,	you	can	add	the		android:onClick		attribute	to	the	button	for	sending	a
message:

<ImageButton

				...

				android:onClick="smsSendMessage"/>

In	the		smsSendMessage()		method,	you	would	convert	the	phone	number	to	a	string	prefixed
by	"smsto:"	(as	in		smsto:14155551212	).	Use	an	implicit	intent	with		ACTION_SENDTO		to	pass	the
phone	number	to	the	SMS	app,	and	set	the	phone	number	and	message	for	the	intent	with
	setData()		and		putExtra	.

Tip:	The	"smsto:"	prefix	with		ACTION_SENDTO		ensures	that	your	intent	is	handled	only	by	a
text	messaging	app	(and	not	by	other	email	or	social	apps).

If	the	user	has	several	SMS	messaging	apps,	the	user	can	choose	which	one	to	open.	The
SMS	app	opens	with	the	supplied	phone	number	and	message,	enabling	the	user	to	tap	a
button	to	send	the	message,	or	change	the	number	and	message	before	sending.	The	SMS
app	then	sends	the	message.

The	following	code	demonstrates	how	to	perform	an	implicit	intent	to	send	a	message:

public	void	smsSendMessage(View	view)	{

				//	Find	the	TextView	number_to_call	and	assign	it	to	textView.

				TextView	textView	=	(TextView)	findViewById(R.id.number_to_call);

				//	Concatenate	"smsto:"	with	phone	number	to	create	smsNumber.

				String	smsNumber	=	"smsto:"	+	textView.getText().toString();

				//	Find	the	sms_message	view.

				EditText	smsEditText	=	(EditText)	findViewById(R.id.sms_message);

				//	Get	the	text	of	the	sms	message.

				String	sms	=	smsEditText.getText().toString();

				//	Create	the	intent.

				Intent	smsIntent	=	new	Intent(Intent.ACTION_SENDTO);

				//	Set	the	data	for	the	intent	as	the	phone	number.

				smsIntent.setData(Uri.parse(smsNumber));

				//	Add	the	message	(sms)	with	the	key	("sms_body").

				smsIntent.putExtra("sms_body",	sms);

				//	If	package	resolves	(target	app	installed),	send	intent.

				if	(smsIntent.resolveActivity(getPackageManager())	!=	null)	{

								startActivity(smsIntent);

				}	else	{

								Log.e(TAG,	"Can't	resolve	app	for	ACTION_SENDTO	Intent.");

				}

}

2:	SMS	Messages

84



Note	the	following	in	the	above	code:

The	method	gets	the	phone	number	from	the		number_to_call		TextView,	and
concatenates	it	with	the		smsto:		prefix	(as	in		smsto:14155551212	)	before	assigning	it	to
	smsNumber	.	It	also	gets	the	message	entered	into	the	EditText	view.
To	launch	an	SMS	messaging	app,	use	an	implicit	intent	(	smsIntent	)	with
	ACTION_SENDTO	,	and	set	the	phone	number	and	message	for	the	intent	with		setData()	
and		putExtra	.

The	putExtra()	method	needs	two	strings:	the	key	identifying	the	type	of	data
(	"sms_body"	)	and	the	data	itself,	which	is	the	text	of	the	message	(	sms	).	For	more
information	about	common	intents	and	the		putExtra()		method,	see	Common	Intents:
Text	Messaging.

You	need	to	supply	a	check	to	see	if	the	implicit	intent	resolves	to	a	package	(an	app),
and	if	it	does,	you	need	to	start	the		smsIntent		activity.	If	it	doesn't,	display	a	log
message	about	the	failure.

Sending	SMS	messages	from	your	app
To	send	an	SMS	message	from	your	app,	use	the	sendTextMessage()	method	of	the
SmsManager	class.	Perform	these	steps	to	enable	sending	messages	from	within	your	app:

1.	 Add	the		SEND_SMS		permission	to	send	SMS	messages.
2.	 Check	to	see	if	the	user	continues	to	grant	permission.	If	not,	request	permission.
3.	 Use	the		sendTextMessage()		method	of	the	SmsManager	class.

Checking	for	user	permission

Beginning	in	Android	6.0	(API	level	23),	users	grant	permissions	to	apps	while	the	app	is
running,	not	when	they	install	the	app.	This	approach	streamlines	the	app	install	process,
since	the	user	does	not	need	to	grant	permissions	when	they	install	or	update	the	app.	It
also	gives	the	user	more	control	over	the	app's	functionality.	However,	your	app	must	check
for	permission	every	time	it	does	something	that	requires	permission	(such	as	sending	an
SMS	message).	If	the	user	has	used	the	Settings	app	to	turn	off	SMS	permissions	for	the
app,	your	app	can	display	a	dialog	to	request	permission.

Tip:	For	a	complete	description	of	the	request	permission	process,	see	Requesting
Permissions	at	Run	Time.

Add	the		SEND_SMS		permission	to	the	AndroidManifest.xml	file	after	the	first	line	(with	the
	package		definition)	and	before	the		<application>		section:

2:	SMS	Messages

85

https://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String,%20java.lang.String)
https://developer.android.com/guide/components/intents-common.html#Messaging
https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/training/permissions/requesting.html


<uses-permission	android:name="android.permission.SEND_SMS"	/>

Because	the	user	can	turn	permissions	on	or	off	for	each	app,	your	app	must	check	whether
it	still	has	permission	every	time	it	does	something	that	requires	permission	(such	as
sending	an	SMS	message).	If	the	user	has	turned	SMS	permission	off	for	the	app,	your	app
can	display	a	dialog	to	request	permission.

Follow	these	steps:

1.	 At	the	top	of	the	activity	that	sends	an	SMS	message,	and	below	the	activity's	class
definition,	define	a	constant	variable	to	hold	the	request	code,	and	set	it	to	an	integer:

private	static	final	int	MY_PERMISSIONS_REQUEST_SEND_SMS	=	1;

Why	the	integer	1?	Each	permission	request	needs	three	parameters:	the		context	,	a
string	array	of	permissions,	and	an	integer		requestCode	.	The		requestCode		is	the
integer	attached	to	the	request.	When	a	result	returns	in	the	activity,	it	contains	this
code	and	uses	it	to	differentiate	multiple	permission	results	from	each	other.

2.	 In	the	activity	that	makes	a	phone	call,	create	a	method	that	uses	the
checkSelfPermission()	method	to	determine	whether	your	app	has	been	granted	the
permission:

private	void	checkForSmsPermission()	{

			if	(ActivityCompat.checkSelfPermission(this,

																				Manifest.permission.SEND_SMS)	!=

																				PackageManager.PERMISSION_GRANTED)	{

							Log.d(TAG,	getString(R.string.permission_not_granted));

							//	Permission	not	yet	granted.	Use	requestPermissions().

							//	MY_PERMISSIONS_REQUEST_SEND_SMS	is	an

							//	app-defined	int	constant.	The	callback	method	gets	the

							//	result	of	the	request.

							ActivityCompat.requestPermissions(this,

																				new	String[]{Manifest.permission.SEND_SMS},

																				MY_PERMISSIONS_REQUEST_SEND_SMS);

			}	else	{

							//	Permission	already	granted.	Enable	the	message	button.

							enableSmsButton();

			}

}

The	code	uses		checkSelfPermission()		to	determine	whether	your	app	has	been
granted	a	particular	permission	by	the	user.	If	permission	has	not	been	granted,	the
code	uses	the	requestPermissions()	method	to	display	a	standard	dialog	for	the	user	to
grant	permission.

2:	SMS	Messages

86

https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)


Use	your		checkForSmsPermission()		method	to	check	for	permission	at	the	following	times:

When	the	activity	starts—in	its		onCreate()		method.
Every	time	before	sending	a	message.	Since	the	user	might	turn	off	the	SMS
permission	while	the	app	is	still	running,	call	the		checkForSmsPermission()		method	in	the
	smsSendMessage()		method	before	using	the		SmsManager		class.

Requesting	user	permission

If	permission	has	not	been	granted	by	the	user,	use	the	requestPermissions()	method	of	the
	ActivityCompat		class.	The		requestPermissions()		method	needs	three	parameters:	the
context	(	this	),	a	string	array	of	permissions	(	new	String[]
{Manifest.permission.SEND_SMS}	),	and	the	predefined	integer
	MY_PERMISSIONS_REQUEST_SEND_SMS		for	the		requestCode	.

When	your	app	calls		requestPermissions()	,	the	system	shows	a	standard	dialog	to	the	user,
as	shown	in	the	figure	below.

2:	SMS	Messages

87

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)


2:	SMS	Messages

88



When	the	user	responds	to	the	request	permission	dialog	by	tapping	Deny	or	Allow,	the
system	invokes	the	onRequestPermissionsResult()	method,	passing	it	the	user	response.
Your	app	has	to	override	that	method	to	find	out	whether	the	permission	was	granted.

The	following	code	demonstrates	how	you	can	use	a		switch		statement	in	your
implementation	of		onRequestPermissionsResult()		based	on	the	value	of		requestCode	.	The
user's	response	to	the	request	dialog	is	returned	in	the		permissions		array	(index		0		if	only
one	permission	is	requested	in	the	dialog).	This	is	compared	to	the	corresponding	grant
result,	which	is	either		PERMISSION_GRANTED		or		PERMISSION_DENIED	.

If	the	user	denies	a	permission	request,	your	app	should	disable	the	functionality	that
depends	on	this	permission	and	show	a	dialog	explaining	why	it	could	not	perform	it.	The
code	below	logs	a	debug	message,	displays	a	toast	to	show	that	permission	was	not
granted,	and	disables	the	message	icon	used	as	a	button.

@Override

public	void	onRequestPermissionsResult(int	requestCode,

																				String	permissions[],	int[]	grantResults)	{

				switch	(requestCode)	{

								case	MY_PERMISSIONS_REQUEST_SEND_SMS:	{

												if	(permissions[0].equalsIgnoreCase(Manifest.permission.SEND_SMS)

																								&&	grantResults[0]	==

																								PackageManager.PERMISSION_GRANTED)	{

																//	Permission	was	granted.

												}	else	{

																//	Permission	denied.

																Log.d(TAG,	getString(R.string.failure_permission));

																Toast.makeText(MainActivity.this,

																												getString(R.string.failure_permission),

																																		Toast.LENGTH_SHORT).show();

																//	Disable	the	message	button.

																disableSmsButton();

												}

								}

				}

}

Using	SmsManager	to	send	the	message

Use	the	sendTextMessage()	method	of	the	SmsManager	class	to	send	the	message,	which
takes	the	following	parameters:

	destinationAddress	:	The	string	for	the	phone	number	to	receive	the	message.
	scAddress	:	A	string	for	the	service	center	address,	or		null		to	use	the	current	default
SMSC.	A	Short	Message	Service	Center	(SMSC)	is	a	network	element	in	the	mobile
telephone	network.	The	mobile	network	operator	usually	presets	the	correct	service

2:	SMS	Messages

89

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.OnRequestPermissionsResultCallback.html#onRequestPermissionsResult(int,%20java.lang.String[],%20int[])
https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html


center	number	in	the	default	profile	of	settings	stored	in	the	device's	SIM	card.

Tip:	You	can	find	the	default	SMSC	in	an	Android	smartphone's	hidden	menu.	Open	the
Phone	app	and	dial	##4636##	to	open	the	testing	menu.	Tap	Phone	information,	and
scroll	to	the	bottom.	The	SMSC	number	should	appear	blank.	Tap	Refresh	to	see	the
number.

	smsMessage	:	A	string	for	the	body	of	the	message	to	send.
	sentIntent	:	A	PendingIntent.	If	not		null	,	this	is	broadcast	when	the	message	is
successfully	sent	or	if	the	message	failed.
	deliveryIntent	:	A	PendingIntent.	If	not		null	,	this	is	broadcast	when	the	message	is
delivered	to	the	recipient.

Follow	these	steps	to	use	the	sendTextMessage()	method:

1.	 Create	an	onClick	handler	for	a	button	that	sends	the	message.
2.	 Get	the	strings	for	the	phone	number	(	destinationAddress)		and	the	message

(	smsMessage)	.
3.	 Declare	additional	string	and		PendingIntent		parameters:

...

//	Set	the	service	center	address	if	needed,	otherwise	null.

String	scAddress	=	null;

//	Set	pending	intents	to	broadcast

//	when	message	sent	and	when	delivered,	or	set	to	null.

PendingIntent	sentIntent	=	null,	deliveryIntent	=	null;

...

4.	 Use	the	SmsManager	class	to	create		smsManager	,	which	automatically	imports
	android.telephony.SmsManager	,	and	use		sendTextMessage()		to	send	the	message:

...

//	Use	SmsManager.

SmsManager	smsManager	=	SmsManager.getDefault();

smsManager.sendTextMessage

							(destinationAddress,	scAddress,	smsMessage,

																							sentIntent,	deliveryIntent);

...

The	following	code	snippet	shows	a	sample	onClick	handler	for	sending	a	message:

2:	SMS	Messages

90

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html


public	void	smsSendMessage(View	view)	{

				EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

				//	Set	the	destination	phone	number	to	the	string	in	editText.

				String	destinationAddress	=	editText.getText().toString();

				//	Find	the	sms_message	view.

				EditText	smsEditText	=	(EditText)	findViewById(R.id.sms_message);

				//	Get	the	text	of	the	SMS	message.

				String	smsMessage	=	smsEditText.getText().toString();

				//	Set	the	service	center	address	if	needed,	otherwise	null.

				String	scAddress	=	null;

				//	Set	pending	intents	to	broadcast

				//	when	message	sent	and	when	delivered,	or	set	to	null.

				PendingIntent	sentIntent	=	null,	deliveryIntent	=	null;

				//	Check	for	permission	first.

				checkForSmsPermission();

				//	Use	SmsManager.

				SmsManager	smsManager	=	SmsManager.getDefault();

				smsManager.sendTextMessage

																		(destinationAddress,	scAddress,	smsMessage,

																																	sentIntent,	deliveryIntent);

}

Receiving	SMS	messages
To	receive	SMS	messages,	use	the	onReceive()	method	of	the	BroadcastReceiver	class.
The	Android	framework	sends	out	system	broadcasts	of	events	such	as		SMS_RECEIVED		for
receiving	an	SMS	message.	You	must	also	include		RECEIVE_SMS		permission	in	your	project's
AndroidManifest.xml	file:

	<uses-permission	android:name="android.permission.RECEIVE_SMS"	/>	

To	use	a	broadcast	receiver:

1.	 Add	the	broadcast	receiver	by	choosing	File	>	New	>	Other	>	Broadcast	Receiver.
The		<receiver...</receiver>		tags	are	automatically	added	to	the	AndroidManifest.xml
file.

2.	 Register	the	receiver	by	adding	an	intent	filter	within	the		<receiver...</receiver>		tags
to	specify	the	type	of	broadcast	intent	you	want	to	receive.

3.	 Implement	the		onReceive()		method.

Adding	a	broadcast	receiver

You	can	perform	the	first	step	by	selecting	the	package	name	in	the	Project:Android:	view
and	choosing	File	>	New	>	Other	>	Broadcast	Receiver.	Make	sure	"Exported"	and
"Enabled"	are	checked.	The	"Exported"	option	allows	your	app	to	respond	to	outside

2:	SMS	Messages

91

https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html


broadcasts,	while	"Enabled"	allows	it	to	be	instantiated	by	the	system.

Android	Studio	automatically	generates	a		<receiver>		tag	in	the	app's	AndroidManifest.xml
file,	with	your	chosen	options	as	attributes:

<receiver

				android:name="com.example.android.phonecallingsms.MySmsReceiver"

				android:enabled="true"

				android:exported="true">

</receiver>

Registering	the	broadcast	receiver

In	order	to	receive	any	broadcasts,	you	must	register	for	specific	broadcast	intents.	In	the
Intent	documentation,	under	"Standard	Broadcast	Actions",	you	can	find	some	of	the
common	broadcast	intents	sent	by	the	system.

The	following	intent	filter	registers	the	receiver	for	the
	android.provider.Telephony.SMS_RECEIVED		intent:

<receiver

				android:name="com.example.android.smsmessaging.MySmsReceiver"

				android:enabled="true"

				android:exported="true">

				<intent-filter>

									<action	android:name="android.provider.Telephony.SMS_RECEIVED"/>

				</intent-filter>

</receiver>

Implementing	the	onReceive()	method

Once	your	app's	BroadcastReceiver	intercepts	a	broadcast	it	is	registered	for
(	SMS_RECEIVED	),	the	intent	is	delivered	to	the	receiver's		onReceive()		method,	along	with	the
context	in	which	the	receiver	is	running.

The	following	shows	the	first	part	of	the		onReceive()		method,	which	does	the	following:

Retrieves	the	extras	(the	SMS	message)	from	the	intent.
Stores	it	in	a		bundle	.
Defines	the		msgs		array	and		strMessage		string.
Gets	the		format		for	the	message	from	the		bundle		in	order	to	use	it	with
createFromPdu()	to	create	the	SmsMessage.

2:	SMS	Messages

92

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[],%20java.lang.String)
https://developer.android.com/reference/android/telephony/SmsMessage.html


The		format		is	the	message's	mobile	telephony	system	format	passed	in	an
	SMS_RECEIVED_ACTION		broadcast.	It	is	usually	"3gpp"	for	GSM/UMTS/LTE	messages	in	the
3GPP	format,	or	"3gpp2"	for	CDMA/LTE	messages	in	3GPP2	format.

@Override

public	void	onReceive(Context	context,	Intent	intent)	{

				//	Get	the	SMS	message.

				Bundle	bundle	=	intent.getExtras();

				SmsMessage[]	msgs;

				String	strMessage	=	"";

				String	format	=	bundle.getString("format");

				//	Retrieve	the	SMS	message	received.

				...

}

The		onReceive()		method	then	retrieves	from	the	bundle	one	or	more	pieces	of	data	in	the
PDU:

...

//	Retrieve	the	SMS	message	received.

Object[]	pdus	=	(Object[])	bundle.get("pdus");

if	(pdus	!=	null)	{

				//	Fill	the	msgs	array.

				msgs	=	new	SmsMessage[pdus.length];

				for	(int	i	=	0;	i	<	msgs.length;	i++)	{

								...

Use	createFromPdu(byte[]	pdu,	String	format)	to	fill	the		msgs		array	for	Android	version	6.0
(Marshmallow)	and	newer	versions.	For	earlier	versions	of	Android,	use	the	deprecated
signature	createFromPdu(byte[]	pdu):

For	Android	version	6.0	(Marshmallow)	and	newer	versions,	use	the	following,	which
includes		format	:

		msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i],	format);

For	earlier	versions	of	Android,	use	the	following:

		msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i]);

The		onReceive()		method	then	builds	the		strMessage		to	show	in	a	toast	message.	It	gets
the	originating	address	using	the		getOriginatingAddress()		method,	and	the	message	body
using	the		getMessageBody()		method.

2:	SMS	Messages

93

https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[],%20java.lang.String)
https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[])
https://developer.android.com/reference/android/telephony/SmsMessage.html#getOriginatingAddress()
https://developer.android.com/reference/android/telephony/SmsMessage.html#getMessageBody()


...

//	Build	the	message	to	show.

strMessage	+=	"SMS	from	"	+	msgs[i].getOriginatingAddress();

strMessage	+=	"	:"	+	msgs[i].getMessageBody()	+	"\n";

...

The	following	shows	the	complete		onReceive()		method	for	SMS	messages:

@TargetApi(Build.VERSION_CODES.M)

@Override

public	void	onReceive(Context	context,	Intent	intent)	{

				//	Get	the	SMS	message.

				Bundle	bundle	=	intent.getExtras();

				SmsMessage[]	msgs;

				String	strMessage	=	"";

				String	format	=	bundle.getString("format");

				//	Retrieve	the	SMS	message	received.

				Object[]	pdus	=	(Object[])	bundle.get("pdus");

				if	(pdus	!=	null)	{

								//	Check	the	Android	version.

								boolean	isVersionM	=

																								(Build.VERSION.SDK_INT	>=	Build.VERSION_CODES.M);

								//	Fill	the	msgs	array.

								msgs	=	new	SmsMessage[pdus.length];

								for	(int	i	=	0;	i	<	msgs.length;	i++)	{

												//	Check	Android	version	and	use	appropriate	createFromPdu.

												if	(isVersionM)	{

																//	If	Android	version	M	or	newer:

																msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i],	format);

												}	else	{

																//	If	Android	version	L	or	older:

																msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i]);

												}

												//	Build	the	message	to	show.

												strMessage	+=	"SMS	from	"	+	msgs[i].getOriginatingAddress();

												strMessage	+=	"	:"	+	msgs[i].getMessageBody()	+	"\n";

												//	Log	and	display	the	SMS	message.

												Log.d(TAG,	"onReceive:	"	+	strMessage);

												Toast.makeText(context,	strMessage,	Toast.LENGTH_LONG).show();

								}

				}

}

Tip:	To	build	an	SMS	app	with	more	features,	see	Telephony	in	the	Android	Developer's
Documentation,	and	read	the	blog	post	Getting	Your	SMS	Apps	Ready	for	KitKat.

Receiving	test	messages	in	the	emulator

2:	SMS	Messages

94

https://developer.android.com/reference/android/provider/Telephony.html
http://android-developers.blogspot.com/2013/10/getting-your-sms-apps-ready-for-kitkat.html


You	can	emulate	receiving	a	call	or	an	SMS	text	message	by	clicking	the	…	(More)	icon	at

the	bottom	of	the	emulator's	toolbar	on	the	right	side,	as	shown	in	the	figure	below.	

2:	SMS	Messages

95



The	extended	controls	for	the	emulator	appear.	Click	Phone	in	the	left	column	to	see	the
extended	phone	controls:	

Enter	a	message	(or	use	the	default	"marshmallows"	message)	and	click	Send	Message	to
send	an	SMS	message	to	your	emulator.

The	emulator	essentially	sends	itself	the	message,	and	responds	as	if	receiving	a	call	or
receiving	an	SMS	message.

Related	practical
Sending	and	Receiving	SMS	Messages	-	Part	1
Sending	and	Receiving	SMS	Messages	-	Part	2

Learn	more
Android	Developer	Reference:

Intent
Common	Intents:	Text	Messaging

2:	SMS	Messages

96

http://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/components/intents-common.html#Messaging


Intents	and	Intent	Filters
SmsManager
SmsMessage
Requesting	Permissions	at	Run	Time
checkSelfPermission
Run	Apps	on	the	Android	Emulator

Stack	Overflow:	Simulating	incoming	call	or	sms	in	Android	Studio
Android	blog:	Getting	Your	SMS	Apps	Ready	for	KitKat

2:	SMS	Messages

97

http://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/telephony/SmsMessage.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/studio/run/emulator.html
http://stackoverflow.com/questions/27638462/simulating-incoming-call-or-sms-in-android-studio
http://android-developers.blogspot.com/2013/10/getting-your-sms-apps-ready-for-kitkat.html


2.1	-	Part	1:	Sending	and	Receiving	SMS
Messages
Contents:

What	you	should	already	KNOW
What	you	will	LEARN
What	you	will	DO
App	overview
Task	1:	Launch	a	messaging	app	to	send	a	message
Task	2:	Send	an	SMS	message	from	within	an	app

Android	smartphones	can	send	and	receive	messages	to	or	from	any	other	phone	that
supports	Short	Message	Service	(SMS).	You	have	two	choices	for	sending	SMS	messages:

Use	an	implicit	Intent	to	launch	a	messaging	app	with	the	ACTION_SENDTO	intent
action.

This	is	the	simplest	choice	for	sending	messages.	The	user	can	add	a	picture	or
other	attachment	in	the	messaging	app,	if	the	messaging	app	supports	adding
attachments.
Your	app	doesn't	need	code	to	request	permission	from	the	user.
If	the	user	has	multiple	SMS	messaging	apps	installed	on	the	Android	phone,	the
App	chooser	will	appear	with	a	list	of	these	apps,	and	the	user	can	choose	which
one	to	use.	(Android	smartphones	will	have	at	least	one,	such	as	Messenger.)
The	user	can	change	the	message	in	the	messaging	app	before	sending	it.
The	user	navigates	back	to	your	app	using	the	Back	button.

Send	the	SMS	message	using	the	sendTextMessage()	method	or	other	methods	of	the
SmsManager	class.

This	is	a	good	choice	for	sending	messages	from	your	app	without	having	to	use
another	installed	app.
Your	app	must	ask	the	user	for	permission	before	sending	the	SMS	message,	if	the
user	hasn't	already	granted	permission.
The	user	stays	in	your	app	during	and	after	sending	the	message.
You	can	manage	SMS	operations	such	as	dividing	a	message	into	fragments,
sending	a	multipart	message,	get	carrier-dependent	configuration	values,	and	so
on.

To	receive	SMS	messages,	use	the	onReceive()	method	of	the	BroadcastReceiver	class.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

98

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_SENDTO
https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html


What	you	should	already	KNOW
You	should	already	be	able	to:

Create	an	onClick	method	for	a	button	with	the		android:onClick		attribute.
Use	an	implicit	intent	to	perform	a	function	with	another	app.
Use	a	broadcast	receiver	to	receive	system	events.

What	you	will	LEARN
In	this	practical,	you	will	learn	to:

Launch	an	SMS	messaging	app	from	your	app	with	a	phone	number	and	message.
Send	an	SMS	message	from	within	an	app.
Check	for	the	SMS	permission,	and	request	permission	if	necessary.
Receive	SMS	events	using	a	broadcast	receiver.
Extract	an	SMS	message	from	an	SMS	event.

What	you	will	DO
In	this	practical,	you	will:

Create	an	app	that	uses	an	implicit	intent	to	launch	a	messaging	app.
Pass	data	(the	phone	number)	and	the	message	with	the	implicit	intent.
Create	an	app	that	sends	SMS	messages	using	the	SmsManager	class.
Check	for	the	SMS	permission,	which	can	change	at	any	time.
Request	permission	from	the	user,	if	necessary,	to	send	SMS	messages.
Receive	and	process	an	SMS	message.

App	overview
You	will	create	two	new	apps	based	on	apps	you	created	previously	for	the	lesson	about
making	phone	calls:

PhoneMessaging:	Rename	and	refactor	the	PhoneCallDial	app	from	the	previous
chapter,	and	add	code	to	enable	a	user	to	not	only	dial	a	hard-coded	phone	number	but
also	send	an	SMS	message	to	the	phone	number.	It	uses	an	implicit	intent	using
	ACTION_SENDTO		and	the	phone	number	to	launch	a	messaging	app	to	send	the
message.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

99

https://developer.android.com/reference/android/telephony/SmsManager.html
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneMessaging


As	shown	in	the	figure	below,	the	PhoneCallDial	app	already	has	TextEdit	views	for	the
contact	name	and	the	hard-coded	phone	number,	and	an	ImageButton	for	making	a
phone	call.	You	will	copy	the	app,	rename	it	to	PhoneMessaging,	and	modify	the	layout
to	include	an	EditText	for	entering	the	message,	and	another	ImageButton	with	an	icon
that	the	user	can	tap	to	send	the	message.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

100



2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

101



SMS	Messaging:	Change	the	PhoneCallingSample	app	from	the	previous	chapter	to
enable	a	user	to	enter	a	phone	number,	enter	an	SMS	message,	and	send	the	message
from	within	the	app.	It	checks	for	permission	and	then	uses	the	SmsManager	class	to
send	the	message.

As	shown	in	the	figure	below,	the	PhoneCallingSample	app	already	has	an	EditText
view	for	entering	the	phone	number	and	an	ImageButton	for	making	a	phone	call.	You
will	copy	the	app,	rename	it	to	SmsMessaging,	and	modify	the	layout	to	include
another	EditText	for	entering	the	message,	and	change	the	ImageButton	to	an	icon	that
the	user	can	tap	to	send	the	message.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

102

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/SmsMessaging
https://developer.android.com/reference/android/telephony/SmsManager.html


2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

103



Task	1.	Launch	a	messaging	app	to	send	a
message
In	this	task	you	create	an	app	called	PhoneMessaging,	a	new	version	of	the	PhoneCallDial
app	from	a	previous	lesson.	The	new	app	launches	a	messaging	app	with	an	implicit	intent,
and	passes	a	fixed	phone	number	and	a	message	entered	by	the	user.

The	user	can	tap	the	messaging	icon	in	your	app	to	send	the	message.	In	the	messaging
app	launched	by	the	intent,	the	user	can	tap	to	send	the	message,	or	change	the	message
or	the	phone	number	before	sending	the	message.	After	sending	the	message,	the	user	can
navigate	back	to	your	app	using	the	Back	button.

1.1	Modify	the	app	and	layout

1.	 Copy	the	PhoneCallDial	project	folder,	rename	it	to	PhoneMessaging,	and	refactor	it
to	populate	the	new	name	throughout	the	app	project.	(See	the	Appendix	for
instructions	on	copying	a	project.)

2.	 Add	an	icon	for	the	messaging	button	by	following	these	steps:

i.	 Select	drawable	in	the	Project:	Android	view	and	choose	File	>	New	>	Vector
Asset.

ii.	 Click	the	Android	icon	next	to	"Icon:"	to	choose	an	icon.	To	find	a	messaging	icon,
choose	Communication	in	the	left	column.

iii.	 Select	the	icon,	click	OK,	click	Next,	and	then	click	Finish.

3.	 Add	the	following	EditText	to	the	existing	layout	after	the		phone_icon		ImageButton:

...

<ImageButton

				android:id="@+id/phone_icon"

				...	/>

<EditText

				android:id="@+id/sms_message"

				android:layout_width="200dp"

				android:layout_height="wrap_content"

				android:layout_below="@id/number_to_call"

				android:layout_marginTop="@dimen/activity_vertical_margin"

				android:layout_marginRight="@dimen/activity_horizontal_margin"

				android:hint="Enter	message	here"

				android:inputType="textMultiLine"/>

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

104

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallDial
https://android-developer-training.gitbooks.io/android-developer-course/content/appendix_utilities.html#copy_project


You	will	use	the		android:id			sms_message		to	retrieve	the	message	in	your	code.	You
can	use		@dimen/activity_horizontal_margin		and		@dimen/activity_vertical_margin		for
the	EditText	margins	because	they	are	already	defined	in	the	dimens.xml	file.	The
EditText	view	uses	the		android:inputType		attribute	set	to		"textMultiLine"		for	entering
multiple	lines	of	text.

4.	 After	adding	hard-coded	strings	and	dimensions,	extract	them	into	resources:
	android:layout_width="@dimen/edittext_width"	:	The	width	of	the	EditText	message
(200dp).
	android:hint="@string/enter_message_here"	:	The	hint	for	the	EditText	("Enter
message	here").

5.	 Add	the	following	ImageButton	to	the	layout	after	the	above	EditText:

<ImageButton

				android:id="@+id/message_icon"

				android:contentDescription="Send	a	message"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_marginTop="@dimen/activity_vertical_margin"

				android:layout_toRightOf="@id/sms_message"

				android:layout_toEndOf="@id/sms_message"

				android:layout_below="@id/phone_icon"

				android:src="@drawable/ic_message_black_24dp"

				android:onClick="smsSendMessage"/>

You	will	use	the		android:id			message_icon		to	refer	to	the	ImageButton	for	launching
the	messaging	app.	Use	the	vector	asset	you	added	previously	(such	as
	ic_message_black_24dp		for	a	messaging	icon)	for	the	ImageButton.

6.	 After	adding	the	hard-coded	string	for	the		android:contentDescription		attribute,	extract
it	into	the	resource		send_a_message	.

The		smsSendMessage()		method	referred	to	in	the		android:onClick		attribute	remains
highlighted	until	you	create	this	method	in	the	MainActivity,	which	you	will	do	in	the	next
step.

7.	 Click		smsSendMessage		in	the		android:onClick		attribute,	click	the	red	light	bulb	that
appears,	and	then	select	Create	smsSendMessage(View)	in	'MainActivity'.	Android
Studio	automatically	creates	the		smsSendMessage()		method	in	MainActivity	as		public	,
returning		void	,	with	a		View		parameter.	This	method	is	called	when	the	user	taps	the
	message_icon		ImageButton.

public	void	smsSendMessage(View	view)	{

}

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

105



Your	app's	layout	should	now	look	like	the	following	figure:

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

106



2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

107



1.2	Edit	the	onClick	method	in	MainActivity

1.	 Inside	the		smsSendMessage()		method	in	MainActivity,	get	the	phone	number	from	the
	number_to_call		TextView,	and	concatenate	it	with	the		smsto:		prefix	(as	in
	smsto:14155551212	)	to	create	the	phone	number	URI	string		smsNumber	:

...

TextView	textView	=	(TextView)	findViewById(R.id.number_to_call);

//	Use	format	with	"smsto:"	and	phone	number	to	create	smsNumber.

String	smsNumber	=	String.format("smsto:	%s",

																													textView.getText().toString());

...

2.	 Get	the	string	of	the	message	entered	into	the	EditText	view:

...

//	Find	the	sms_message	view.

EditText	smsEditText	=	(EditText)	findViewById(R.id.sms_message);

//	Get	the	text	of	the	SMS	message.

String	sms	=	smsEditText.getText().toString();

...

3.	 Create	an	implicit	intent	(	smsIntent	)	with	the	intent	action		ACTION_SENDTO	,	and	set	the
phone	number	and	text	message	as	intent	data	and	extended	data,	using		setData()	
and		putExtra	:

...

//	Create	the	intent.

Intent	smsIntent	=	new	Intent(Intent.ACTION_SENDTO);

//	Set	the	data	for	the	intent	as	the	phone	number.

smsIntent.setData(Uri.parse(smsNumber));

		//	Add	the	message	(sms)	with	the	key	("sms_body").

smsIntent.putExtra("sms_body",	sms);

...

The	putExtra()	method	needs	two	strings:	the	key	identifying	the	type	of	data
(	"sms_body"	)	and	the	data	itself,	which	is	the	text	of	the	message	(	sms	).	For	more
information	about	common	intents	and	the		putExtra()		method,	see	Common	Intents:
Text	Messaging.

4.	 Add	a	check	to	see	if	the	implicit	intent	resolves	to	a	package	(a	messaging	app).	If	it
does,	send	the	intent	with		startActivity()	,	and	the	system	launches	the	app.	If	it	does
not,	log	an	error.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

108

https://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String,%20java.lang.String)
https://developer.android.com/guide/components/intents-common.html#Messaging


...

//	If	package	resolves	(target	app	installed),	send	intent.

if	(smsIntent.resolveActivity(getPackageManager())	!=	null)	{

				startActivity(smsIntent);

}	else	{

				Log.e(TAG,	"Can't	resolve	app	for	ACTION_SENDTO	Intent");

}

...

The	full	method	should	now	look	like	the	following:

public	void	smsSendMessage(View	view)	{

				TextView	textView	=	(TextView)	findViewById(R.id.number_to_call);

				//	Use	format	with	"smsto:"	and	phone	number	to	create	smsNumber.

				String	smsNumber	=	String.format("smsto:	%s",

																																								textView.getText().toString());

				//	Find	the	sms_message	view.

				EditText	smsEditText	=	(EditText)	findViewById(R.id.sms_message);

				//	Get	the	text	of	the	sms	message.

				String	sms	=	smsEditText.getText().toString();

				//	Create	the	intent.

				Intent	smsIntent	=	new	Intent(Intent.ACTION_SENDTO);

				//	Set	the	data	for	the	intent	as	the	phone	number.

				smsIntent.setData(Uri.parse(smsNumber));

				//	Add	the	message	(sms)	with	the	key	("sms_body").

				smsIntent.putExtra("sms_body",	sms);

				//	If	package	resolves	(target	app	installed),	send	intent.

				if	(smsIntent.resolveActivity(getPackageManager())	!=	null)	{

								startActivity(smsIntent);

				}	else	{

								Log.d(TAG,	"Can't	resolve	app	for	ACTION_SENDTO	Intent");

				}

}

1.3	Run	the	app

1.	 Run	the	app	on	either	an	emulator	or	a	device.
2.	 Enter	a	message,	and	tap	the	messaging	icon	(marked	"1"	in	the	left	side	of	the	figure

below).	The	messaging	app	appears,	as	shown	on	the	right	side	of	the	figure	below.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

109



3.	 Use	the	Back	button	to	return	to	the	PhoneMessaging	app.	You	may	need	to	tap	or
click	it	more	than	once	to	leave	the	SMS	messaging	app.

Solution	code

Android	Studio	project:	PhoneMessaging

Task	2.	Send	an	SMS	message	from	within	an
app
In	this	task	you	will	copy	the	PhoneCallingSample	app	from	the	lesson	on	making	a	phone
call,	rename	and	refactor	it	to	SmsMessaging,	and	modify	its	layout	and	code	to	create	an
app	that	enables	a	user	to	enter	a	phone	number,	enter	an	SMS	message,	and	send	the
message	from	within	the	app.

In	the	first	step	you	will	add	the	code	to	send	the	message,	but	the	app	will	work	only	if	you
first	turn	on	SMS	permission	manually	for	the	app	in	Settings	on	your	device	or	emulator.

In	subsequent	steps	you	will	do	away	with	setting	this	permission	manually	by	requesting
SMS	permission	from	the	app's	user	if	it	is	not	already	set.

2.1	Create	the	app	and	layout	and	add	permission

1.	 Copy	the	PhoneCallingSample	project	folder,	rename	it	to	SmsMessaging,	and
refactor	it	to	populate	the	new	name	throughout	the	app	project.	(See	the	Appendix	for

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

110

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneMessaging
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSample
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSample
https://google-developer-training.gitbooks.io/android-developer-fundamentals-course-practicals/content/appendix_utilities.html


instructions	on	copying	a	project.)
2.	 Open	strings.xml	and	change	the		app_name		string	resource	to		"SMS	Messaging"	.
3.	 Add	the		android.permission.SEND_SMS		permission	to	the	AndroidManifest.xml	file,	and

remove	the		CALL_PHONE		and		READ_PHONE_STATE		permissions	for	phone	use,	so	that	you
have	only	one	permission:

		<uses-permission	android:name="android.permission.SEND_SMS"	/>

Sending	an	SMS	message	is	permission-protected.	Your	app	can't	use	SMS	without	the
	SEND_SMS		permission	line	in	AndroidManifest.xml.	This	permission	line	enables	a
setting	for	the	app	in	the	Settings	app	that	gives	the	user	the	choice	of	allowing	or
disallowing	use	of	SMS.	(In	the	next	task	you	will	add	a	way	for	the	user	to	grant	that
permission	from	within	the	app.)

4.	 Add	a	messaging	icon	as	you	did	in	the	previous	task,	and	remove	the	phone	icon	from
the	drawable	folder.

5.	 Open	activity_main.xml	and	edit	the	EditText	view	and	replace	the
	android:layout_margin		attribute	with	the	following:

...

android:layout_marginTop="@dimen/activity_vertical_margin"

android:layout_marginRight="@dimen/activity_horizontal_margin"

...

You	can	use		@dimen/activity_horizontal_margin		and		@dimen/activity_vertical_margin	
because	they	are	already	defined	in	the	dimens.xml	file.

6.	 Add	the	following	EditText	to	the	layout	after	the	first	EditText	(for	an	image	of	the
layout,	see	the	figure	at	the	end	of	these	steps):

...

<EditText

				android:id="@+id/sms_message"

				android:layout_width="@dimen/edittext_width"

				android:layout_height="wrap_content"

				android:layout_below="@id/editText_main"

				android:layout_margin="@dimen/activity_horizontal_margin"

				android:hint="Enter	message	here"

				android:inputType="textMultiLine"/>

You	will	use	the		android:id		attribute	to		sms_message		to	identify	it	as	the	EditText	for
the	message.	The	EditText	view	uses	the		android:inputType		attribute	set	to
	"textMultiLine"		for	entering	multiple	lines	of	text.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

111



7.	 After	adding	the	hard-coded	string	"Enter	message	here"	for	the		android:hint		attribute,
extract	it	into	the	text	resource		"enter_message_here"	.

8.	 Change	the		android:layout_below		attribute	for	the		button_retry		Button	to	refer	to	the
	sms_message		EditText	view.	The	Button	should	appear	below	the	SMS	message	in	the
layout	if	it	becomes	visible:

android:layout_below="@id/sms_message"

The		button_retry		Button	is	set	to	invisible.	It	appears	only	if	the	app	detected	that
telephony	is	not	enabled,	or	if	the	user	previously	denied	phone	permission	when	the
app	requested	it.

9.	 Replace	the		phone_icon		ImageButton	from	the	existing	layout	with	the	following:

<ImageButton

				android:id="@+id/message_icon"

				android:contentDescription="Send	a	message"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_marginTop="@dimen/activity_vertical_margin"

				android:layout_toRightOf="@id/sms_message"

				android:layout_toEndOf="@id/sms_message"

				android:layout_below="@id/editText_main"

				android:src="@drawable/ic_message_black_24dp"

				android:visibility="visible"

				android:onClick="smsSendMessage"/>

You	will	use	the		android:id			message_icon		in	your	code	to	refer	to	the	ImageButton	for
sending	the	message.	Use	the	vector	asset	you	added	previously	(such	as
	ic_message_black_24dp		for	a	messaging	icon)	for	the	ImageButton.	Make	sure	you
include	the		android:visibility		attribute	set	to		"visible"	.	You	will	control	the	visibility
of	this	ImageButton	from	your	code.

10.	 After	adding	a	hard-coded	string	for	the		android:contentDescription		attribute,	extract	it
to	the		send_a_message		string	resource.

The		smsSendMessage()		method	referred	to	in	the		android:onClick		attribute	for	the
ImageButton	remains	highlighted	until	you	create	this	method	in	the	MainActivity,	which
you	will	do	in	the	next	step.

11.	 Click		smsSendMessage		in	the		android:onClick		attribute,	click	the	red	light	bulb	that
appears,	and	then	select	Create	smsSendMessage(View)	in	'MainActivity'.	Android
Studio	automatically	creates	the		smsSendMessage()		method	in	MainActivity	as		public	,

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

112



returning		void	,	with	a		View		parameter.	This	method	is	called	when	the	user	taps	the
	message_icon		ImageButton.

public	void	smsSendMessage(View	view)	{

}

Your	app's	layout	should	look	like	the	following	figure	(the		button_retry		Button	is	invisible):

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

113



2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

114



2.2	Edit	the	onClick	method	in	MainActivity

1.	 Open	MainActivity	and	find	the	new		smsSendMessage()		method	you	created	in	the	last
step.

2.	 Add	statements	to	the	method	to	get	the	string	for	the	phone	number	from	the
	editText_main		view,	and	get	the	string	for	the	SMS	message	from	the		sms_message	
view:

public	void	smsSendMessage(View	view)	{

			EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

			//	Set	the	destination	phone	number	to	the	string	in	editText.

			String	destinationAddress	=	editText.getText().toString();

			//	Find	the	sms_message	view.

			EditText	smsEditText	=	(EditText)	findViewById(R.id.sms_message);

			//	Get	the	text	of	the	sms	message.

			String	smsMessage	=	smsEditText.getText().toString();

			...

}

3.	 Declare	additional	string	and		PendingIntent		parameters	for	the	sendTextMessage()
method,	which	will	send	the	message	(	destinationAddress		is	already	declared	as	the
string	for	the	phone	number	to	receive	the	message):

	scAddress	:	A	string	for	the	service	center	address,	or		null		to	use	the	current
default	SMSC.	A	Short	Message	Service	Center	(SMSC)	is	a	network	element	in
the	mobile	telephone	network.	The	mobile	network	operator	usually	presets	the
correct	service	center	number	in	the	default	profile	of	settings	stored	in	the	device's
SIM	card.
	smsMessage	:	A	string	for	the	body	of	the	message	to	send.
	sentIntent	:	A		PendingIntent	.	If	not		null	,	this	is	broadcast	when	the	message	is
successfully	sent	or	if	the	message	failed.
	deliveryIntent	:	A		PendingIntent	.	If	not		null	,	this	is	broadcast	when	the
message	is	delivered	to	the	recipient.

...

//	Set	the	service	center	address	if	needed,	otherwise	null.

String	scAddress	=	null;

//	Set	pending	intents	to	broadcast

//	when	message	sent	and	when	delivered,	or	set	to	null.

PendingIntent	sentIntent	=	null,	deliveryIntent	=	null;

...

4.	 Use	the	SmsManager	class	to	create		smsManager	,	which	automatically	imports
	android.telephony.SmsManager	,	and	use		sendTextMessage()		to	send	the	message:

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

115

https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html


...

//	Use	SmsManager.

SmsManager	smsManager	=	SmsManager.getDefault();

smsManager.sendTextMessage

							(destinationAddress,	scAddress,	smsMessage,

																							sentIntent,	deliveryIntent);

...

The	full	method	should	now	look	like	the	following:

public	void	smsSendMessage(View	view)	{

				EditText	editText	=	(EditText)	findViewById(R.id.editText_main);

				//	Set	the	destination	phone	number	to	the	string	in	editText.

				String	destinationAddress	=	editText.getText().toString();

				//	Find	the	sms_message	view.

				EditText	smsEditText	=	(EditText)	findViewById(R.id.sms_message);

				//	Get	the	text	of	the	SMS	message.

				String	smsMessage	=	smsEditText.getText().toString();

				//	Set	the	service	center	address	if	needed,	otherwise	null.

				String	scAddress	=	null;

				//	Set	pending	intents	to	broadcast

				//	when	message	sent	and	when	delivered,	or	set	to	null.

				PendingIntent	sentIntent	=	null,	deliveryIntent	=	null;

				//	Use	SmsManager.

				SmsManager	smsManager	=	SmsManager.getDefault();

				smsManager.sendTextMessage

																		(destinationAddress,	scAddress,	smsMessage,

																																	sentIntent,	deliveryIntent);

}

If	you	run	the	app	now,	on	either	a	device	or	an	emulator,	the	app	may	crash	depending	on
whether	the	device	or	emulator	has	been	previously	set	to	allow	the	app	to	use	SMS.	In
some	versions	of	Android,	this	permission	is	turned	on	by	default.	In	other	versions,	this
permission	is	turned	off	by	default.

To	set	the	app's	permission	on	a	device	or	emulator	instance,	choose	Settings	>	Apps	>
SMS	Messaging	>	Permissions,	and	turn	on	the	SMS	permission	for	the	app.	Since	the
user	can	turn	on	or	off	SMS	permission	at	any	time,	you	need	to	add	a	check	in	your	app	for
this	permission,	and	request	it	from	the	user	if	necessary.	You	will	do	this	in	the	next	step.

2.3	Check	for	and	request	permission	for	SMS

Your	app	must	always	get	permission	to	use	anything	that	is	not	part	of	the	app	itself.	In
Step	2.1	you	added	the	following	permission	to	the	AndroidManifest.xml	file:

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

116



<uses-permission	android:name="android.permission.SEND_SMS"	/>

This	permission	enables	a	permission	setting	in	the	Settings	app	for	your	app.	The	user	can
allow	or	disallow	this	permission	at	any	time	from	the	Settings	app.	You	can	add	code	to
request	permission	from	the	user	if	the	user	has	turned	off	SMS	permission	for	the	app.
Follow	these	steps:

1.	 At	the	top	of	MainActivity,	below	the	class	definition,	change	the	global	constant	for	the
	MY_PERMISSIONS_REQUEST_CALL_PHONE		request	code	to	the	following:

private	static	final	int	MY_PERMISSIONS_REQUEST_SEND_SMS	=	1;

When	a	result	returns	in	the	activity,	it	will	contain	the		MY_PERMISSIONS_REQUEST_SEND_SMS	
	requestCode		so	that	your	code	can	identify	it.

2.	 Remove	the	constant	declarations	for		mTelephonyManager		and		MyPhoneCallListener	.

3.	 Remove	the		isTelephonyEnabled()		method,	and	remove	all	of	the	code	in	the
	onCreate()		method	that	starts	with	the		mTelephonyManager		assignment,	leaving	only
the	first	two	lines:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

}

4.	 Refactor/rename	the	existing		disableCallButton()		method	to		disableSmsButton()		and
edit	the	method	to	do	the	following:

i.	 Display	a	toast	to	notify	the	user	that	SMS	usage	is	disabled.

ii.	 Find	and	then	set	the		smsButton		(the	message	icon)	to	be	invisible	so	that	the	user
can't	send	a	message.

iii.	 Set	the	Retry	button	to	be	visible,	so	that	the	user	can	restart	the	activity	and	allow
permission.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

117



private	void	disableSmsButton()	{

			Toast.makeText(this,	"SMS	usage	disabled",	Toast.LENGTH_LONG).show();

			ImageButton	smsButton	=	(ImageButton)	findViewById(R.id.message_icon);

			smsButton.setVisibility(View.INVISIBLE);

			Button	retryButton	=	(Button)	findViewById(R.id.button_retry);

			retryButton.setVisibility(View.VISIBLE);

}

Extract	a	string	resource	(	sms_disabled	)	for	the	hard-coded	string	"SMS	usage
disabled"	in	the	toast	statement.

5.	 Refactor/rename	the	existing		enableCallButton()		method	to		enableSmsButton()		to	set
the	SMS	message	icon	button	to	be	visible:

private	void	enableSmsButton()	{

			ImageButton	smsButton	=	(ImageButton)	findViewById(R.id.message_icon);

			smsButton.setVisibility(View.VISIBLE);

}

6.	 Modify	the	existing		retryApp()		method	in	MainActivity	to	remove	the	call	to
	enableCallButton()	.

7.	 In	MainActivity,	rename	and	refactor	the		checkForPhonePermission()		method	to
	checkForSmsPermission()	,	and	change	the	code	to	the	following:

private	void	checkForSmsPermission()	{

			if	(ActivityCompat.checkSelfPermission(this,

																Manifest.permission.SEND_SMS)	!=

																PackageManager.PERMISSION_GRANTED)	{

							Log.d(TAG,	getString(R.string.permission_not_granted));

							//	Permission	not	yet	granted.	Use	requestPermissions().

							//	MY_PERMISSIONS_REQUEST_SEND_SMS	is	an

							//	app-defined	int	constant.	The	callback	method	gets	the

							//	result	of	the	request.

							ActivityCompat.requestPermissions(this,

																new	String[]{Manifest.permission.SEND_SMS},

																MY_PERMISSIONS_REQUEST_SEND_SMS);

			}	else	{

							//	Permission	already	granted.	Enable	the	SMS	button.

							enableSmsButton();

			}

}

Use	checkSelfPermission()	to	determine	whether	your	app	has	been	granted	a
particular	permission	by	the	user.	If	permission	has	not	been	granted	by	the	user,	use
the	requestPermissions()	method	to	display	a	standard	dialog	for	the	user	to	grant
permission.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

118

https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)


When	your	app	calls	requestPermissions(),	the	system	shows	a	standard	dialog	for
each	permission	to	the	user,	as	shown	in	the	figure	below.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

119

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)


2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

120



8.	 When	the	user	responds	to	the	request	permission	dialog,	the	system	invokes	your
app's	onRequestPermissionsResult()	method,	passing	it	the	user	response.	Find	the
	onRequestPermissionsResult()		method	you	created	for	the	previous	version	of	this	app.

Your	implementation	of		onRequestPermissionsResult()		already	uses	a		switch	
statement	based	on	the	value	of		requestCode	.	A		case		for	checking	phone	permission
is	already	implemented	using		MY_PERMISSIONS_REQUEST_CALL_PHONE	.	Replace
	MY_PERMISSIONS_REQUEST_CALL_PHONE		with		MY_PERMISSIONS_REQUEST_SEND_SMS	,	and	replace
	CALL_PHONE		with		SEND_SMS	.	The	switch	block	should	now	look	like	the	following:

...

switch	(requestCode)	{

				case	MY_PERMISSIONS_REQUEST_SEND_SMS:	{

								if	(permissions[0].equalsIgnoreCase

												(Manifest.permission.SEND_SMS)

												&&	grantResults[0]	==

												PackageManager.PERMISSION_GRANTED)	{

												//	Permission	was	granted.	Enable	sms	button.

												enableSmsButton();

								}	else	{

												//	Permission	denied.

												Log.d(TAG,	getString(R.string.failure_permission));

												Toast.makeText(this,

																								getString(R.string.failure_permission),

																								Toast.LENGTH_LONG).show();

												//	Disable	the	sms	button.

												disableSmsButton();

								}

				}

}

If	the	user	allows	the	permission	request,	the	message	button	is	re-enabled	with
	enableSmsButton()		in	case	it	was	made	invisible	by	lack	of	permission.

If	the	user	denies	the	permission	requests,	your	app	should	take	appropriate	action.	For
example,	your	app	might	disable	the	functionality	that	depends	on	a	specific	permission
and	show	a	dialog	explaining	why	it	could	not	perform	it.	For	now,	log	a	debug
message,	display	a	toast	to	show	that	permission	was	not	granted,	and	disable	the
message	button	with		disableSmsButton()	.

9.	 In	the		onCreate()		method	of	MainActivity,	add	a	call	to	the		checkForSmsPermission()	
method:

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

121

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.OnRequestPermissionsResultCallback.html#onRequestPermissionsResult(int,%20java.lang.String[],%20int[])


@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

			super.onCreate(savedInstanceState);

			setContentView(R.layout.activity_main);

			checkForSmsPermission();

}

10.	 Remove	the		callNumber()		method	and	the		MyPhoneCallListener		inner	class	(including
the		onCallStateChanged()		method,	as	you	are	no	longer	using	the	Telephony	Manager).

11.	 Remove	the		onDestroy()		method	since	you	are	no	longer	using	a	listener.
12.	 Since	the	user	might	turn	off	SMS	permission	while	the	app	is	still	running,	add	a	check

for	SMS	permission	in	the		smsSendMessage()		method	after	setting	the		sentIntent		but
before	using	the		SmsManager		class:

...

PendingIntent	sentIntent	=	null,	deliveryIntent	=	null;

//	Check	for	permission	first.

checkForSmsPermission();

//	Use	SmsManager.

...

2.4	Run	the	app	and	test	permissions

1.	 Run	your	app.	Enter	a	phone	number	(or	the	emulator	port	number	if	using	emulators),
and	enter	the	message	to	send.	Tap	the	messaging	icon	to	send	the	message.

2.	 After	running	the	app,	choose	Settings	>	Apps	>	SMS	Messaging	>	Permissions	and
turn	off	SMS	permission	for	the	app.

3.	 Run	the	app	again.	You	should	see	the	SMS	permission	request	dialog	as	shown	below.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

122



2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

123



4.	 Click	Deny.	In	the	app's	UI,	the	message	icon	button	no	longer	appears,	and	a	Retry
button	appears,	as	shown	below.

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

124



2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

125



5.	 Click	Retry,	and	then	click	Allow	for	SMS	permission.
6.	 Test	the	app's	ability	to	send	a	message:

i.	 Enter	a	phone	number.

ii.	 Enter	a	message.

iii.	 Tap	the	messaging	icon.

End	of	Part	1	-	Continue	with	Part	2

2.1:	Sending	and	Receiving	SMS	Messages	-	Part	1

126



2.2:	Part	2	-	Sending	and	Receiving	SMS
Messages
Contents:

Task	3:	Receive	SMS	messages	with	a	broadcast	receiver
Coding	challenge
Summary
Related	concept
Learn	more

Task	3.	Receive	SMS	messages	with	a
broadcast	receiver
To	receive	SMS	messages,	use	the	onReceive()	method	of	the	BroadcastReceiver	class.
The	Android	framework	sends	out	system	broadcasts	of	events	such	as	receiving	an	SMS
message,	containing	intents	that	are	meant	to	be	received	using	a	BroadcastReceiver.	You
need	to	add	the		RECEIVE_SMS		permission	to	your	app's	AndroidManifest.xml	file.

3.1	Add	permission	and	create	a	broadcast	receiver

To	add		RECEIVE_SMS		permission	and	create	a	broadcast	receiver,	follow	these	steps:

1.	 Open	the	AndroidManifest.xml	file	and	add	the		android.permission.RECEIVE_SMS	
permission	below	the	other	permission	for	SMS	use:

		<uses-permission	android:name="android.permission.SEND_SMS"	/>

		<uses-permission	android:name="android.permission.RECEIVE_SMS"	/>

Receiving	an	SMS	message	is	permission-protected.	Your	app	can't	receive	SMS
messages	without	the		RECEIVE_SMS		permission	line	in	AndroidManifest.xml.

2.	 Select	the	package	name	in	the	Project:Android:	view	and	choose	File	>	New	>	Other
>	Broadcast	Receiver.

3.	 Name	the	class	"MySmsReceiver"	and	make	sure	"Exported"	and	"Enabled"	are
checked.

The	"Exported"	option	allows	your	app	to	respond	to	outside	broadcasts,	while
"Enabled"	allows	it	to	be	instantiated	by	the	system.

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

127

https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html


4.	 Open	the	AndroidManifest.xml	file	again.	Note	that	Android	Studio	automatically
generates	a		<receiver>		tag	with	your	chosen	options	as	attributes:

<receiver

				android:name=

								"com.example.android.smsmessaging.MySmsReceiver"

				android:enabled="true"

				android:exported="true">

</receiver>

3.2	Register	the	broadcast	receiver

In	order	to	receive	any	broadcasts,	you	must	register	for	specific	broadcast	intents.	In	the
Intent	documentation,	under	"Standard	Broadcast	Actions",	you	can	find	some	of	the
common	broadcast	intents	sent	by	the	system.	In	this	app,	you	use	the
	android.provider.Telephony.SMS_RECEIVED		intent.

Add	the	following	inside	the		<receiver>		tags	to	register	your	receiver:

<receiver

				android:name="com.example.android.smsmessaging.MySmsReceiver"

				android:enabled="true"

				android:exported="true">

				<intent-filter>

									<action	android:name="android.provider.Telephony.SMS_RECEIVED"/>

				</intent-filter>

</receiver>

3.3	Implement	the	onReceive()	method

Once	the	BroadcastReceiver	intercepts	a	broadcast	for	which	it	is	registered
(	SMS_RECEIVED	),	the	intent	is	delivered	to	the	receiver's		onReceive()		method,	along	with	the
context	in	which	the	receiver	is	running.

1.	 Open	MySmsReceiver	and	add	under	the	class	declaration	a	string	constant		TAG		for
log	messages	and	a	string	constant		pdu_type		for	identifying	PDUs	in	a	bundle:

public	class	MySmsReceiver	extends	BroadcastReceiver	{

			private	static	final	String	TAG	=

																										MySmsReceiver.class.getSimpleName();

			public	static	final	String	pdu_type	=	"pdus";

			...

2.	 Delete	the	default	implementation	inside	the	supplied		onReceive()		method.
3.	 In	the	blank		onReceive()		method:

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

128

https://developer.android.com/reference/android/content/Intent.html


i.	 Add	the		@TargetAPI		annotation	for	the	method,	because	it	performs	a	different
action	depending	on	the	build	version.

ii.	 Retrieve	a	map	of	extended	data	from	the	intent	to	a		bundle	.

iii.	 Define	the		msgs		array	and		strMessage		string.

iv.	 Get	the		format		for	the	message	from	the		bundle	.

@TargetApi(Build.VERSION_CODES.M)

@Override

public	void	onReceive(Context	context,	Intent	intent)	{

			//	Get	the	SMS	message.

			Bundle	bundle	=	intent.getExtras();

			SmsMessage[]	msgs;

			String	strMessage	=	"";

			String	format	=	bundle.getString("format");

			...

As	you	enter		SmsMessage[]	,	Android	Studio	automatically	imports
	android.telephony.SmsMessage	.

4.	 Retrieve	from	the	bundle	one	or	more	pieces	of	data	in	the	protocol	data	unit	(PDU)
format,	which	is	the	industry-standard	format	for	an	SMS	message:

...

//	Retrieve	the	SMS	message	received.

Object[]	pdus	=	(Object[])	bundle.get(pdu_type);

...

5.	 If	there	are	messages	(	pdus	),	check	for	Android	version	6.0	(Marshmallow)	and	newer
versions.	You	will	use	this	boolean	to	check	if	your	app	needs	the	deprecated	signature
createFromPdu(byte[]	pdu)	for	earlier	versions	of	Android:

...

if	(pdus	!=	null)	{

			//	Check	the	Android	version.

			boolean	isVersionM	=	(Build.VERSION.SDK_INT	>=

																									Build.VERSION_CODES.M);

			...

6.	 Initialize	the		msgs		array,	and	use	its	length	in	the		for		loop:

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

129

https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[])


...

//	Fill	the	msgs	array.

		msgs	=	new	SmsMessage[pdus.length];

						for	(int	i	=	0;	i	<	msgs.length;	i++)	{

										//	Check	Android	version	and	use	appropriate	createFromPdu.

										if	(isVersionM)	{

														//	If	Android	version	M	or	newer:

														msgs[i]	=

																			SmsMessage.createFromPdu((byte[])	pdus[i],	format);

										}	else	{

														//	If	Android	version	L	or	older:

														msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i]);

										}

										...

Use	createFromPdu(byte[]	pdu,	String	format)	to	fill	the		msgs		array	for	Android	version
6.0	(Marshmallow)	and	newer	versions.	For	earlier	versions	of	Android,	use	the
deprecated	signature	createFromPdu(byte[]	pdu).

7.	 Build	the		strMessage		to	show	in	a	toast	message:

i.	 Get	the	originating	address	using	the		getOriginatingAddress()		method.

ii.	 Get	the	message	body	using	the		getMessageBody()		method.

iii.	 Add	an	ending	character	for	an	end-of-line.

...

//	Build	the	message	to	show.

strMessage	+=	"SMS	from	"	+	msgs[i].getOriginatingAddress();

strMessage	+=	"	:"	+	msgs[i].getMessageBody()	+	"\n";

...

8.	 Log	the	resulting		strMessage		and	display	a	toast	with	it:

...

//	Log	and	display	the	SMS	message.

Log.d(TAG,	"onReceive:	"	+	strMessage);

Toast.makeText(context,	strMessage,	Toast.LENGTH_LONG).show();

...

The	complete		onReceive()		method	is	shown	below:

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

130

https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[],%20java.lang.String)
https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[])


@TargetApi(Build.VERSION_CODES.M)

@Override

public	void	onReceive(Context	context,	Intent	intent)	{

				//	Get	the	SMS	message.

				Bundle	bundle	=	intent.getExtras();

				SmsMessage[]	msgs;

				String	strMessage	=	"";

				String	format	=	bundle.getString("format");

				//	Retrieve	the	SMS	message	received.

				Object[]	pdus	=	(Object[])	bundle.get(pdu_type);

				if	(pdus	!=	null)	{

								//	Check	the	Android	version.

								boolean	isVersionM	=

																								(Build.VERSION.SDK_INT	>=	Build.VERSION_CODES.M);

								//	Fill	the	msgs	array.

								msgs	=	new	SmsMessage[pdus.length];

								for	(int	i	=	0;	i	<	msgs.length;	i++)	{

												//	Check	Android	version	and	use	appropriate	createFromPdu.

												if	(isVersionM)	{

																//	If	Android	version	M	or	newer:

																msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i],	format);

												}	else	{

																//	If	Android	version	L	or	older:

																msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i]);

												}

												//	Build	the	message	to	show.

												strMessage	+=	"SMS	from	"	+	msgs[i].getOriginatingAddress();

												strMessage	+=	"	:"	+	msgs[i].getMessageBody()	+	"\n";

												//	Log	and	display	the	SMS	message.

												Log.d(TAG,	"onReceive:	"	+	strMessage);

												Toast.makeText(context,	strMessage,	Toast.LENGTH_LONG).show();

								}

				}

}

3.4	Run	the	app	and	send	a	message

Run	the	app	on	a	device.	If	possible,	have	someone	send	you	an	SMS	message	from	a
different	device.

You	can	also	receive	an	SMS	text	message	when	testing	on	an	emulator.	Follow	these
steps:

1.	 Run	the	app	on	an	emulator.
2.	 Click	the	…	(More)	icon	at	the	bottom	of	the	emulator's	toolbar	on	the	right	side,	as

shown	in	the	figure	below:

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

131



3.	 The	extended	controls	for	the	emulator	appear.	Click	Phone	in	the	left	column	to	see
the	extended	phone	controls:	

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

132



4.	 You	can	now	enter	a	message	(or	use	the	default	"marshmallows"	message)	and	click
Send	Message	to	have	the	emulator	send	an	SMS	message	to	itself.

5.	 The	emulator	responds	with	a	notification	about	receiving	an	SMS	message.	The	app
should	also	display	a	toast	message	showing	the	message	and	its	originating	address,
as	shown	below:

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

133



2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

134



Solution	Code

Android	Studio	project:	SmsMessaging

Coding	challenge
Note:	All	coding	challenges	are	optional.
Challenge:	Create	a	simple	app	with	one	button,	Choose	Picture	and	Send,	that	enables
the	user	to	select	an	image	from	the	Gallery	and	send	it	as	a	Multimedia	Messaging	Service
(MMS)	message.	After	tapping	the	button,	a	choice	of	apps	may	appear,	including	the
Messenger	app.	The	user	can	select	the	Messenger	app,	and	select	an	existing
conversation	or	create	a	new	conversation,	and	then	send	the	image	as	a	message.

The	following	are	hints:

To	access	and	share	an	image	from	the	Gallery,	you	need	the	following	permission	in
the	AndroidManifest.xml	file:

		<uses-permission

									android:name="android.permission.READ_EXTERNAL_STORAGE"	/>

To	enable	the	above	permission,	follow	the	model	shown	previously	in	this	chapter	to
check	for	the		READ_EXTERNAL_STORAGE		permission,	and	request	permission	if	necessary.
Use	the	following	intent	for	picking	an	image:

Intent	galleryIntent	=	new	Intent(Intent.ACTION_PICK,

			android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

startActivityForResult(galleryIntent,	IMAGE_PICK);

Override	the	onActivityResult	method	to	retrieve	the	intent	result,	and	use		getData()		to
get	the	Uri	of	the	image	in	the	result:

protected	void	onActivityResult

				(int	requestCode,	int	resultCode,	Intent	imageReturnedIntent)	{

				...

				Uri	mSelectedImage	=	imageReturnedIntent.getData();

}

Set	the	image's	Uri,	and	use	an	intent	with		ACTION_SEND	,		putExtra()	,	and		setType()	:

Intent	smsIntent	=	new	Intent(Intent.ACTION_SEND);

smsIntent.putExtra(Intent.EXTRA_STREAM,	mSelectedImage);

smsIntent.setType("image/*");

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

135

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/SmsMessaging
https://developer.android.com/reference/android/app/Activity.html#onActivityResult(int,%20int,%20android.content.Intent)


Android	Studio	emulators	can't	pass	MMS	messages	to	and	from	each	other.	You	must
test	this	app	on	real	Android	devices.
For	more	information	about	sending	multimedia	messages,	see	Sending	MMS	with
Android.

Android	Studio	project:	MMSChallenge

Summary

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

136

http://jtribe.blogspot.com/2008/12/sending-mms-with-android.html
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/MMSChallenge


To	send	an	intent	to	an	SMS	messaging	app	with	a	phone	number,	your	app	needs	to
prepare	a	URI	for	the	phone	number	as	a	string	prefixed	by	"smsto:"	(as	in
	smsto:14155551212	).
Use	an	implicit	intent	with		ACTION_SENDTO		to	launch	an	SMS	app,	and	set	the	phone
number	and	message	for	the	intent	with		setData()		and		putExtra	.
To	send	SMS	messages	from	within	your	app,	add	the		"android.permission.SEND_SMS"	
permission	to	the	AndroidManifest.xml	file:
Use	the	sendTextMessage()	method	of	the	SmsManager	class	to	send	the	message,
which	takes	the	following	parameters:

	destinationAddress	:	The	string	for	the	phone	number	to	receive	the	message.
	scAddress	:	A	string	for	the	service	center	address,	or		null		to	use	the	current
default	Short	Message	Service	Center	(SMSC).
	smsMessage	:	A	string	for	the	body	of	the	message	to	send.
	sentIntent	:	A		PendingIntent	.	If	not		null	,	this	is	broadcast	when	the	message	is
successfully	sent	or	if	the	message	failed.
	deliveryIntent	:	A		PendingIntent	.	If	not		null	,	this	is	broadcast	when	the
message	is	delivered	to	the	recipient.

Use	checkSelfPermission()	to	determine	whether	your	app	has	been	granted	a
particular	permission	by	the	user.	If	permission	has	not	been	granted,	use	the
requestPermissions()	method	to	display	a	standard	dialog	for	the	user	to	grant
permission.
Create	a	broadcast	receiver	to	receive	SMS	messages	using	the	onReceive()	method	of
the	BroadcastReceiver	class.
Add	the		"android.provider.Telephony.SMS_RECEIVED"		intent	filter	between	the
	<receiver>		tags	in	AndroidManifest.xml	to	register	your	receiver	for	SMS	messages.
Use		getExtras()		to	get	the	message	from	the	intent:

Bundle	bundle	=	intent.getExtras();

Retrieve	the	messages	from	the	PDU	format:

		Object[]	pdus	=	(Object[])	bundle.get("pdus");

Use	the	following		createFromPdu()		signature	for	Android	version	6.0	(Marshmallow)
and	newer	versions:

		msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i],	format);

Use	the	following		createFromPdu()		signature	for	versions	older	than	Android	version
6.0:

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

137

https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)
https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html


		msgs[i]	=	SmsMessage.createFromPdu((byte[])	pdus[i]);

To	send	an	SMS	message	to	an	app	running	in	an	emulator,	click	the	…	(More)	icon	at
the	bottom	of	the	emulator's	toolbar	on	the	right	side,	choose	Phone,	enter	a	message
(or	use	the	default	"marshmallows"	message),	and	click	Send	Message.

Related	concept
SMS	Messages

Learn	more
Android	Developer	Reference:

Intent
Common	Intents:	Text	Messaging
Intents	and	Intent	Filters
SmsManager
Requesting	Permissions	at	Run	Time
checkSelfPermission
Run	Apps	on	the	Android	Emulator

Stack	Overflow:	Simulating	incoming	call	or	sms	in	Android	Studio
Android	blog:	Getting	Your	SMS	Apps	Ready	for	KitKat

2.2:	Sending	and	Receiving	SMS	Messages	-	Part	2

138

http://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/guide/components/intents-common.html#Messaging
http://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/studio/run/emulator.html
http://stackoverflow.com/questions/27638462/simulating-incoming-call-or-sms-in-android-studio
http://android-developers.blogspot.com/2013/10/getting-your-sms-apps-ready-for-kitkat.html

	Table of Contents
	Introduction
	1: Phone Calls
	1.1: Making Phone Calls - Part 1
	1.2: Making Phone Calls - Part 2
	2: SMS Messages
	2.1: Sending and Receiving SMS Messages - Part 1
	2.2: Sending and Receiving SMS Messages - Part 2

